Math, asked by Nidhiesh231, 21 days ago

1. The angle between the lines passing through the points (5, 7, 8), (3, 3, 4) and (-1, -2, 1), (1, 2, 5) is
(A) pie/3
(B) pie/2
(C) pie/6
(D) 0​

Answers

Answered by senboni123456
1

Step-by-step explanation:

Vector equation of the line passing through \rm(5,7,8)\:\: \& \:\: (3,3,4) is

  \vec{r} = (3 \hat{i} + 3\hat{j} + 4\hat{k}) +  \lambda \{  (5 - 3)\hat{i}  + (7 - 3)\hat{j}  + (8 - 4)\hat{k}\} \\

   \implies\vec{r} = (3 \hat{i} + 3\hat{j} + 4\hat{k}) +  \lambda (  2\hat{i}  + 4\hat{j}  +4\hat{k}) \\

   \implies\vec{r} = (3 \hat{i} + 3\hat{j} + 4\hat{k}) +  2\lambda (  \hat{i}  + 2\hat{j}  +2\hat{k}) \\

   \implies\vec{r} = (3 \hat{i} + 3\hat{j} + 4\hat{k}) +   \alpha  (  \hat{i}  + 2\hat{j}  +2\hat{k}) \\

Here, \alpha=2\lambda is a constant

Vector equation of the line passing through \rm(-1,-2,1)\:\: \& \:\: (1,2,5) is

 \vec{r} = ( -  \hat{i} - 2 \hat{j} +  \hat{k}) +   \mu \{(1 + 1) \hat{i} + (2 + 2) \hat{j} + (5 - 1) \hat{k} \} \\

 \implies \vec{r} = ( -  \hat{i} - 2 \hat{j} +  \hat{k}) +   \mu \{2 \hat{i} + 4\hat{j} + 4 \hat{k} \} \\

 \implies \vec{r} = ( -  \hat{i} - 2 \hat{j} +  \hat{k}) +  2 \mu ( \hat{i} + 2\hat{j} + 2 \hat{k}) \\

 \implies \vec{r} = ( -  \hat{i} - 2 \hat{j} +  \hat{k}) +  \beta  ( \hat{i} + 2\hat{j} + 2 \hat{k}) \\

Here, \alpha=2\mu is a constant,

Since, both the lines are parallel to the same vector  \hat{i}+2\hat{j}+2\hat{k}

So, angle between the lines is 0°

Similar questions