Math, asked by chethana8427, 11 months ago

1) The area ( ABC ) = 16cm2 and area ( DEF) =25cm2 and BC = 2.3cm find EF

Answers

Answered by Anonymous
14

AnswEr :

\underline{\bigstar\:\textsf{According \: to \: given\: in\: question:}}

\bullet\frak{Given}\begin{cases}\sf{ar(\triangle ABC) = 16cm^{2}}\\\sf{ar(\triangle DEF) = 25cm^{2}}\\\sf{BC = 2.3cm}\end{cases}

\bullet\normalsize\sf\ We \: have \: to \: find \: EF

\underline{\bigstar\:\textsf{ Let's \: head \: to \: the \: question \: now:}}

\bullet Here; we use Area of similar triangles theorem,which states that if area of two triangles are similar then they are equal to squares of corresponding sides\normalsize\bf\ [\frac{ar(\triangle ABC)}{ar(\triangle DEF)} = \frac{AB^{2}}{DE^{2}} = \frac{BC^{2}}{EF^{2}} =\frac{AC^{2}}{DF^{2}}]

\large\ : \implies\sf\frac{ar(\triangle ABC) }{ar(\triangle DEF)} = \frac{BC^{2}}{EF^{2}}

\large\ : \implies\sf\frac{16}{25} = \frac{BC^2}{EF^2}

\large\ : \implies\sf\frac{(4)^2}{(5)^2} = \frac{BC^2}{EF^2}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ Cancel \: the \: squares \; both \; sides}) }

\large\ : \implies\sf\frac{4}{5} =\frac{2.3}{EF}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{--Cross multiplication--}) }

\normalsize\ : \implies\sf\ 4EF = 11.5 \\ \\ \normalsize\ : \implies\sf\frac{11.5}{4} =EF \\ \\ \normalsize\ : \implies\sf\ EF = 2.8cm

\underline{\therefore\:\textsf{Hence, \: EF = 2.8cm}}

Similar questions