Math, asked by Anonymous, 7 months ago

1)The center of a circle is (2a,2a-7) find the value of 'a' of the circle passes through the point (11,-9) and has diameter 10√2. 2)Two vertices of equilateral triangle are (3,0) and (6,0) find the third vertex 3)Find the ratio in which the linesegment joining A(1/2,3/2) B(1,-5). 4)If point A(0,2) is equidistant from the point B(3,P) C(P,5) find 'P' also find the length of AB. [Don't spam]

Answers

Answered by ananditanunes65
3

The centre of the circle (0)=(2a,a−7)

Point (P)=(11,−9)

diameter (D)=102 units

Also given, to find out the values of a

from figure, we get OP=7 units

∴ OP=(x2−x1)2+(y2−y1)2²

O=(2a,a−7), P(11,−9)

⇒ 7=(11−2)2+(−9−(a−7))2²

7=121+4a²−44a+(−9−a+7)²

7=121+4a²−44a+a2+4a+4

7=5a²−40a+125

so on both sides, we get,

49=5a²−40a+125

⇒5a²−40a+76=0

We know that 2a−b±b2−4ac is used to findroots for quadratic equation

we get

5a²−40a+76=0;2a−b±b2−4ac

b=−40;a=5;c=76

⇒2×5−(−40)±(−40)2−4(5)(76)=1040±1600−1520

=1040±80=1040±45=104(10±5)=52(10±5)

∴a==52(10+5);a=52(10−5)

a=10.89=11;a=3.10=3

∴a=11,3

Hope this helps you

Please mark as brainliest

Answered by yashaswini3679
2

1. Given,

centre of circle = (2a, a-7)

Circle passes through point (11, -9)

Diameter of circle = 10√2 units

According to the prblm,

10√2/2 = √[(11 - 2a)² + (-9 - a + 7)²]

√50 = √[121 + 4a² - 44a + 4 + a² + 8a]

50 = 125 + 8a² - 32a

5a² - 40a + 75 = 0

5a² - 15a - 25a + 75 = 0

(5a - 25)(a - 3)

a = 3 or 5

2. Let, the third vertex be (x, y)

As the triangle is equilateral,

all sides of it are equal.

According to the prblm,

√[(x - 3)² + (y - 0)²] = √[(x - 6)² + (y - 0)²]

x² + 9 - 6x + y² = x² + 36 - 12x + y²

6x = 27

x = 27/6 = 9/2

√[(x - 3)² + (y - 0)²] = √[(6 - 3)² + (0 - 0)²]

x² + 9 - 6x + y² = 9

(9/2)² - 6(9/2) = -y²

81/4 - 27 = -y²

-27/4 = y²

y = 3√3/2

Therefore, third vertex = (9/2, 3√3/2)

3. Refer the above attachment.

4. Given, AB=AC

= √[(0-3)² + (2-p)²]

= √[(0-p)² + (2-5)²]

= 9 + (2-p)² = p² + 9

= 4 + p² - 4p = p²

4p =4

p = 1.

Substitute of p-value in AB

Length of AB = √[(0-3)² + (2-1)²]

= √(9 + 1)

= 10

Attachments:
Similar questions