Math, asked by guddu5feb02, 5 months ago

1. The complementary function of (D2 + 169)y = 0 is
a. Acos 12x + Bsin 12x
b. A cos 13x + B sin 13x
C. A cos 15x + B sin 15x
Acos 25x + Bsin 25x
d​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{Differential equation is}

\mathsf{(D^2+169)y=0}

\underline{\textbf{To find:}}

\textsf{Complementary function of the given D.E}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{(D^2+169)y=0}

\textsf{Characteristic equation is}

\mathsf{m^2+169=0}

\mathsf{m^2=-169}

\mathsf{m^2=i^213^2}

\mathsf{m^2=(13i)^2}

\mathsf{m=\pm\,13i}

\therefore\textsf{Roots are imaginary}

\textsf{Complementary function is}

\mathsf{e^{\alpha\,x}[A\,cos\,\beta\,x+B\,sin\,\beta\,x]}

\mathsf{=e^{0\,x}[A\,cos\,13\,x+B\,sin\,13\,x]}

\mathsf{=e^{0}[A\,cos\,13\,x+B\,sin\,13\,x]}

\mathsf{=e^{0}[A\,cos\,13\,x+B\,sin\,13\,x]}

\mathsf{=A\,cos\,13\,x+B\,sin\,13\,x}

\underrline{\textbf{Answer:}}

\mathsf{Option\;(b)\;is\;correct}

\underline{\textbf{Find more:}}

the particular integral of the differential equation (D2+D+1)y=ex is equal to (A) 1/3 ex (B) 3ex (C) ex (D) none of these​

https://brainly.in/question/38679116

Similar questions