Math, asked by Anonymous, 6 months ago

1) The diameter of a hemisphere is doubled of the diameter of a sphere. Find the ratio of volume of sphere and hemisphere.​

Answers

Answered by EliteSoul
13

Given :

The diameter of a hemisphere is doubled of the diameter of a sphere.

To find :

Find the ratio of volume of sphere and hemisphere.​

Solution :

Let the diameter of sphere be d unit

∴ Diameter of hemisphere = 2d unit

So, radius of sphere = d/2 unit

And radius of hemisphere = 2d/2 = d unit

Now we know,

Volume of sphere = 4/3 πr³

Volume of hemisphere = 2/3 πr³

Now ratio of volume of sphere to volume of hemisphere :

⇒ Volume of sphere : Volume of hemisphere

⇒ 4/3 πr³ : 2/3 πr³

⇒ 4/3 π(d/2)³ : 2/3 π(d)³

⇒ { 4/3 π (d³/8) }/{2/3 πd³}

⇒ {πd³/6}/{2πd³/3}

⇒ (πd³/6) * (3/2πd³)

⇒ 1/(2 * 2)

⇒ 1/4

1 : 4

Therefore,

Ratio of volume of sphere and hemisphere = 1 : 4

Answered by Anonymous
97

Given:-

  • Diameter of a hemisphere is doubled of the diameter of shphere.

Find:-

  • Ratio of volume of shpere and hemisphere.

Solution:-

Let, diameter of Sphere 'x' units

So, diameter of Hemisphere '2x' units

we, know that Radius is half of Diameter.

Radius of Shpere = x/2 units

Radius of Hemisphere = 2x/2 = x units

Now, using

\huge{\underline{\boxed{\sf Volume \: of \: Sphere =  \dfrac{4}{3}\pi {r}^{3}}}}

 \pink{\sf where}  \small{\begin{cases} \red{\sf r = \dfrac{x}{2}units} \\  \end{cases}}

\implies\sf Volume \: of \: Sphere =  \dfrac{4}{3}\pi {r}^{3} \\  \\

\implies\sf Volume \: of \: Sphere =  \dfrac{4}{3} \times \pi  \bigg({ \frac{x}{2} \bigg) }^{3} \\  \\

\implies\sf Volume \: of \: Sphere =  \dfrac{4}{3} \times \pi  \times  \dfrac{ {x}^{3} }{8} \\  \\

\implies\sf Volume \: of \: Sphere =  \dfrac{4 {x}^{3} }{24} \times \pi\\  \\

\implies\sf Volume \: of \: Sphere =  \dfrac{4 {x}^{3}  \pi}{24} cube \: units\\  \\

Now, using

\huge{\underline{\boxed{\sf Volume \: of \: Hemisphere =  \dfrac{2}{3}\pi {r}^{3}}}}

 \purple{\sf where}  \small{\begin{cases} \orange{\sf r = xunits} \\  \end{cases}}

\implies\sf Volume \: of \: Hemisphere =  \dfrac{2}{3}\pi {r}^{3} \\  \\

\implies\sf Volume \: of \: Hemisphere =  \dfrac{2}{3}\pi {(x)}^{3} \\  \\

\implies\sf Volume \: of \: Hemisphere =  \dfrac{2}{3} \times \pi \times  {x}^{3}  \\  \\

\implies\sf Volume \: of \: Hemisphere =  \dfrac{2 {x}^{3} }{3} \times \pi\\  \\

\implies\sf Volume \: of \: Hemisphere =  \dfrac{2 {x}^{3} \pi}{3}cube \: units\\  \\

Now, Ratio is

\sf \dashrightarrow \dfrac{Volume\:of\:sphere}{Volume\:of\: Hemisphere} \\  \\

\sf \dashrightarrow \dfrac{\dfrac{4 {x}^{3}  \pi}{24}}{ \dfrac{2 {x}^{3} \pi}{3}} \\  \\

\sf \dashrightarrow \dfrac{4 {x}^{3}  \pi}{24} \times \dfrac{3}{2 {x}^{3} \pi} \\   \\

\sf \dashrightarrow \dfrac{12{x}^{3}  \pi}{48 {x}^{3}\pi} \\   \\

\sf \dashrightarrow \dfrac{12}{48} \\   \\

\sf \dashrightarrow \dfrac{1}{4} \\   \\

\tiny{\therefore  \underline{\textsf{Ratio of Surface Area of Sphere and Hemisphere is} \dfrac{1}{4} }}

Similar questions