1) The HCF and LCM of two numbers are 12 and 360. If one of the number is 60 find the other
number?
Answers
Given:-
- LCM of two numbers:- 360
- HCF of two numbers:- 12
- One number:- 60
To Find:-
- Another Number ?
Solution:-
★ Verification:-
- HCF × LCM = a × b
- 12 × 360 = 60 × 72
- 4320 = 4320
Answer:
Given:-
LCM of two numbers:- 360
HCF of two numbers:- 12
One number:- 60
To Find:-
Another Number ?
Solution:-
\bold{\underline{\underline{\boxed{\sf{\orange{HCF × LCM = First \; number(a) × Second \; number(b)}}}}}} < /u > < /p > < p > < /p > < p > < u > [tex]• < /u > < u > \: < /u > < u > < /u > < u > < /u > < u > 12 × 360 = 60 × b
HCF×LCM=Firstnumber(a)×Secondnumber(b)
</u></p><p></p><p><u>[tex]•</u><u></u><u></u><u></u><u>12×360=60×b
• \: \sf \dfrac{12 × 360}{60} = b•
60
12×360
=b
• \: \sf \dfrac{12 × \cancel{360}}{ \cancel{60}}•
60
12×
360
\dag\large\bold{\underline{\underline{\boxed{\sf{\red{72}}}}}}†
72
\begin{gathered} \\ \implies\large\bold{\underline{\underline{\sf{\purple{Hence, \; Another \; number \; is \; 72.}}}}}\end{gathered}
⟹
Hence,Anothernumberis72.
★ Verification:-
HCF × LCM = a × b
12 × 360 = 60 × 72
4320 = 4320
\implies \sf {LHS = RHS}⟹LHS=RHS
\implies\large\bold{\underline{\underline{\sf{\pink{Hence, \; Verified!}}}}}⟹
Hence,Verified!