Math, asked by sujisajisujisaji8, 3 months ago

1 The lengths of two sides of a triangle are 8 centimetres and 10 centimetres
and the angle between them is 140°. Calculate its area. What is the area
of the triangle with sides of the same length, but angle between them140°?​

Answers

Answered by ItzLoveHunter
52

\huge{\boxed{\fcolorbox{cyan}{pink} {Answer}}}

GIVEN ;!

  • \sf{Two \:sides \:of \:a \:triangle \:are \:8cm \:and \:10cm}
  • \sf{\:Angle \:btw \:them = 140°}

TO FIND

  • \sf{\:Calculate \:the \:area = ?¿}
  • \sf{What \:is \:the \:area</li><li>\:of \:the \:triangle \:with \:sides \:of \:the \:same \:length, \:but \;angle \:between \:them \:140°}

LET'S DO SOME CONSTRUCTION ;

  • \sf{\:Consider \:ABC \:is \:a \:triangle}
  • \sf{AB = 10cm \:and \:AC = 8cm \:and \:∠BAC = 40°}
  • \sf{Draw \:a \:perpendicular \:from \:C \:on \:AB = CH}

~~~~~~~~~~~~~~~(refer a figure)

\sf{\:From \:triangle \:ABC}

\sf{⇝CH = AC × \sin 40°}

\sf{⇝CH = 8 × \sin 40°}

\sf{(We \:know \sin 40 \:value = 0.642 \:from \:the \:table}

\sf{⇝CH = 8 × 0.642}

\sf\boxed{⇝CH = 5.136}

\sf{Time \:to \:find \:area ; }

We know the formula ;

{\green{\overline{\green{\underline{\blue{\boxed{\orange{\mathtt{Area \:of \:triangle = \frac{1}{2} × base × height}}}}}}}}}

\sf{⇝Area \:(∆ABC) = \frac{1}{2} × AB × CH}

\sf{⇝Area \:(∆ABC) = \frac{1}{2} × 10 × 5.136}

\sf{⇝Area \:(∆ABC) = \frac{1}{\cancel{2}_{1}} × \cancel{10}^{5} × 5.136}

\sf{⇝Area \:(∆ABC) = 5 × 5.136}

\sf\boxed{⇝Area \:(∆ABC) = 25.68cm²}

It's given angle is 140° i.e ∠BAC = 140°

~~~~~~~~~~~~~~~(refer b figure)

LET'S DO SOME CONSTRUCTION ;

  • \sf{Draw \:perpendicular \:from \:C \:on \:AB \:and \:extend \:AB \:to \:meet \:it \:at \:H}

~~~~~~~~\sf{\therefore CH ⊥ HB}

~~~~~~~~~~\sf{HB \:is \:the \:straight \:line}

\sf{⟹ ∠HAB = ∠HAC + ∠BAC =180°}

\sf{⟹  ∠HAC + 140° = 180°}

\sf{⟹  ∠HAC  = 180° - 140°}

\sf\boxed{⟹  ∠HAC  = 40°}

~~~~~~~~~~\sf{In \:right \:angle \:triangle CHA}

  • \sf{∠HAC = 40° and AC = 8cm}

\sf{⇝CH = AC × \sin 40°}

\sf{⇝CH = 8 × \sin 40°}

\sf{(We \:know \sin 40 \:value = 0.642 \:from \:the \:table}

\sf{⇝CH = 8 × 0.642}

\sf\boxed{⇝CH = 5.136}

Hence if we find the area we get the same value

____________________________________

Hence Area is same only the position of perpendicular line was changed if the angle is considered as 40°

So ;

Area of triangle ( angle 40° ) = 25.68 cm²

Area of triangle ( angle 140° ) = 25.68 cm²

___________________________________

\sf\red{Here \:we \:get \:all \:your \:answer :)}

Attachments:
Answered by Anonymous
5

{\ddagger{\mathrm {\green{Solution}}}}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mathrm{CASE~1}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{Given~:}

\rm{Length~of~two~sides~of~∆~=~ 8~and~10~cm.}

⠀⠀⠀⠀\bf{AB~=~8cm ; BC~=~10cm}

\rm{\angle{AC}~=~40°}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{To~Find~:}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rm{are~of~∆~with~\angle~=~40°.}

\sf{Construction~:}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rm{Draw~bisector~AD} ( refer fig. 1 )

\sf{Solution~:}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{angle{BDC}~=~90°~(AD~\perp~BC)}

\bf{BD~=~BC~=~5cm~( AD~bisect~BC)}

\bf{In~∆ABD~,}

\bf{ sin\theta~=~\dfrac{Perpendicular}{Height}}

\bf{ sin40°~=~\dfrac{AD}{AB}}

\bf{ 0.75~=~\dfrac{AD}{8}}

\bf{ 6 cm~=~AD}

\bf{ Area~of~∆ABC, \angle{A}~=~40°}

\bf{ ar(∆ABC) ~=~ \frac{1}{2}~×~base~×~height}

\bf{ ar(∆ABC) ~=~ \frac{1}{2}~×~10~×~6}

{\green {\boxed {\bf {\blue{ ar(∆ABC) ~=~ 30{cm}^{2}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

══════════════════════════

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\mathrm{CASE~2}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{Given~:}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rm{Length~of~two~sides~of~∆~=~ 8~and~10~cm.}

⠀⠀⠀⠀\bf{AB~=~8cm ; AC~=~10cm}

\rm{\angle{ABC}~=~140°}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{To~Find~:}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rm{area~of~∆~with~\angle~=~140°.}

\sf{Construction~:}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rm{Draw~bisector~BD} ( refer fig. 2)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{Solution~:}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{angle{ABD}~=~70°~(BD~\perp~AC)}

\bf{AD~=~DC~=~5cm~( BD~bisect~AC)}

\bf{In~∆ABD~,}

\bf{ sin\theta~=~\dfrac{Perpendicular}{Height}}

\bf{ sin70°~=~\dfrac{BD}{AB}}

\bf{ 0.78~=~\dfrac{AD}{8}}

\bf{ 6.24 cm~=~AD}

\bf{ Area~of~∆ABC, \angle{A}~=~140°}

\bf{ ar(∆ABC) ~=~ \frac{1}{2}~×~base~×~height}

\bf{ ar(∆ABC) ~=~ \frac{1}{2}~×~10~×~6.24}

{\green {\boxed {\bf {\blue{ ar(∆ABC) ~=~ 31.2{cm}^{2}}}}}}

═══════════════════════════

Attachments:
Similar questions