Math, asked by gireshadithya, 9 months ago

1
The maximum value of

1/√7 sin x + √29 cos x+7


Answers

Answered by mohitjagini
5

Answer:

1

Step-by-step explanation:

To find maximum value of

1/(\sqrt{7} sinx+\sqrt{29} cosx+7)

we should find minimum value of

(\sqrt{7} sinx+\sqrt{29} cosx+7)

minimum value of(\sqrt{7} sinx+\sqrt{29} cosx+7) is 1

so maximum value of the function is 1

Answered by bhuvna789456
0

Answer:

The maximum value of \frac{1}{\sqrt{7} sinx+\sqrt{29} cosx+7} is 1.

Step-by-step explanation:

Given,

\frac{1}{\sqrt{7} sinx+\sqrt{29} cosx+7}

Let,

 y_(_m_i_n_)=\frac{1}{g(x)_m_a_x}

g(x)=\sqrt{7} sinx+\sqrt{29} cosx+7

We know that value very in the range of

-\sqrt{a^2+b^2}asinx+bcosx\sqrt{a^2+b^2}

So,

-\sqrt{7+29}\sqrt{7} sinx+\sqrt{29} cosx\sqrt{7+29}

-6\sqrt{7} sinx+\sqrt{29} cosx6

Now on adding 7 on both sides

-6+7\sqrt{7} sinx+\sqrt{29} cosx6+7

        1\sqrt{7} sinx+\sqrt{29} cosx13

g(x)_m_a_x=13

The maximum value of \frac{1}{\sqrt{7} sinx+\sqrt{29} cosx+7} is 1.

Similar questions