Social Sciences, asked by anushka589singhal, 6 months ago

1. The motion of a particle is described by
 x = xo(1 - {e}^{ - kt}  ) \: where \: t \geqslant 0 \:  \:  \:  \:  \:  \:  \:  \: xo > 0 \:  \:  \:  \:  \:  \:  \:  \:  \: k > 0
With what
velocity does the particle start?
(a)  \frac{xo}{k}  \\ (b) xok\\( c)  \frac{k}{xo}  \\ ( d)2xok

Answers

Answered by Anonymous
11

Given:

The motion of a particle is described by

\sf\:x=x_o(1-e^{-kt}) where \sf\:t\geqslant0\:and\:x>0\:and\:k>0

To Find :

Velocity of the particle at t = 0 sec

Theory :

• Velocity

The rate of change of displacement of a particle with time is called velocity of the particle.

\sf\:Velocity=\dfrac{Distance}{Time\:interval}

In differential form:

\sf\:Velocity,V=\dfrac{dx}{dt}

Solution :

We have ,

\sf\:x=x_o(1-e^{-kt})

Now , Differentiate it with respect to t

\sf\implies\dfrac{dx}{dt}=x_o[\dfrac{d(1)}{dt}-\dfrac{e^{-kt}}{(-kt)}\times\dfrac{d(-kt)}{dt}]

\sf\implies\dfrac{dx}{dt}=x_o[0-e^{-kt}\times(-k)]

\sf\implies\dfrac{dx}{dt}=x_o\:k\:e^{-kt}

\sf\implies\dfrac{dx}{dt}=x_o\:k\times\dfrac{1}{e^{kt}}

\sf\implies\:v=x_o\:k\times\dfrac{1}{e^{kt}}

At t = 0

\sf\implies\:v=x_o\:k\times\dfrac{1}{e^{k\times0}}

\sf\implies\:v=x_o\:k\times\dfrac{1}{e^{0}}

\sf\implies\:v=x_o\:k

Therefore , correct option b )

__________________

More information about topic

  • Velocity is a vector quantity.
  • The velocity of an object can be positive, zero and negative.
  • SI unit of Velocity is m/s
  • Dimension of Velocity: \sf\:[M^0LT{}^{-1}]
Answered by Anonymous
0

Answer:

Given:

The motion of a particle is described by

\sf\:x=x_o(1-e^{-kt})x=x

o

(1−e

−kt

) where \sf\:t\geqslant0\:and\:x > 0\:and\:k > 0t⩾0andx>0andk>0

To Find :

Velocity of the particle at t = 0 sec

Theory :

• Velocity

The rate of change of displacement of a particle with time is called velocity of the particle.

\sf\:Velocity=\dfrac{Distance}{Time\:interval}Velocity=

Timeinterval

Distance

In differential form:

\sf\:Velocity,V=\dfrac{dx}{dt}Velocity,V=

dt

dx

Solution :

We have ,

\sf\:x=x_o(1-e^{-kt})x=x

o

(1−e

−kt

)

Now , Differentiate it with respect to t

\sf\implies\dfrac{dx}{dt}=x_o[\dfrac{d(1)}{dt}-\dfrac{e^{-kt}}{(-kt)}\times\dfrac{d(-kt)}{dt}]⟹

dt

dx

=x

o

[

dt

d(1)

(−kt)

e

−kt

×

dt

d(−kt)

]

\sf\implies\dfrac{dx}{dt}=x_o[0-e^{-kt}\times(-k)]⟹

dt

dx

=x

o

[0−e

−kt

×(−k)]

\sf\implies\dfrac{dx}{dt}=x_o\:k\:e^{-kt}⟹

dt

dx

=x

o

ke

−kt

\sf\implies\dfrac{dx}{dt}=x_o\:k\times\dfrac{1}{e^{kt}}⟹

dt

dx

=x

o

e

kt

1

\sf\implies\:v=x_o\:k\times\dfrac{1}{e^{kt}}⟹v=x

o

e

kt

1

At t = 0

\sf\implies\:v=x_o\:k\times\dfrac{1}{e^{k\times0}}⟹v=x

o

e

k×0

1

\sf\implies\:v=x_o\:k\times\dfrac{1}{e^{0}}⟹v=x

o

e

0

1

\sf\implies\:v=x_o\:k⟹v=x

o

k

Therefore , correct option b )

__________________

More information about topic

Velocity is a vector quantity.

The velocity of an object can be positive, zero and negative.

SI unit of Velocity is m/s

Dimension of Velocity: \sf\:[M^0LT{}^{-1}][M

0

LT

−1

]

Similar questions