Math, asked by meghana666, 1 year ago

1. The perimeter of the quadrilateral ABCD formed by A(-3, 1), B(0,5), C(4,8), D(1.4) taken in
that order is
A(-3, 1), B[0, 5), C (4, 8), D[1, 4) లు వరున శీర్షాలతో ఏర్పడు చతుర్భుజము ABCD యొక్క చుట్టుకొలత

(1)16√2
(2) 25
(3) 20
(4) 10.
answer me fast

Answers

Answered by 5members
49

hope it is useful for you

Attachments:
Answered by MaheswariS
27

Answer:

Perimeter of the quadrilateral ABCD is 20 units

option (3) is correct

Step-by-step explanation:

Formula used:

The distance between two points (x_1,y_1)\:and\:(x_2,y_2)\:is\:\:\:d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Given:

A(-3, 1), B(0, 5), C (4, 8), D(1, 4)

First we find lengths of all sides of the quadrilateral.

AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

AB=\sqrt{(-3-0)^2+(1-5)^2}

AB=\sqrt{(-3)^2+(-4)^2}

AB=\sqrt{9+16}

AB=\sqrt{25}

AB=5

BC=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

BC=\sqrt{(0-4)^2+(5-8)^2}

BC=\sqrt{(-4)^2+(-3)^2}

BC=\sqrt{16+9}

BC=\sqrt{25}

BC=5

CD=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

CD=\sqrt{(4-1)^2+(8-4)^2}

CD=\sqrt{(3)^2+(4)^2}

CD=\sqrt{9+16}

CD=\sqrt{25}

CD=5

AD=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

AD=\sqrt{(-3-1)^2+(1-4)^2}

AD=\sqrt{(-4)^2+(-3)^2}

AD=\sqrt{16+9}

AD=\sqrt{25}

AD=5

Perimeter of the quadrilateral ABCD

=AB+BC+CD+AD

=5+5+5+5

=20\:units

Similar questions