1. The product of four consecutive natural numbers is 840. Find the numbers.
Answers
In context to questions asked,
We have to determine the value of the numbers.
As per questions,
It is given that,
Product of four consecutive natural numbers = 840.
As we know that,
Counting numbers are called as Natural Numbers.
So, let the numbers be - X, (X+1), (X2) and (X+3)
So, from above
Hence, number will be 208.5, 209.5, 210.5 and 211.5 respectively.
Answer:
The four consecutive natural numbers are 4, 5, 6, 7.
Step-by-step-explanation:
Let the smallest of the four consecutive natural numbers be ( n - 1 ), ( n ≠ 1 ).
∴ The four consecutive natural numbers are ( n - 1 ), n, ( n + 1 ), ( n + 2 ).
From the given condition,
Product of four consecutive natural numbers is 840.
∴ ( n - 1 ) ( n ) ( n + 1 ) ( n + 2 ) = 840
⇒ ( n - 1 ) ( n + 1 ) * n ( n + 2 ) = 840
⇒ ( n² - 1² ) * ( n² + 2n ) = 840
⇒ ( n² - 1 ) * ( n² + 2n ) = 840
⇒ n² ( n² + 2n ) - 1 ( n² + 2n ) = 840
⇒ n⁴ + 2n³ - n² - 2n = 840
⇒ n⁴ + 2n³ - n² - 2n - 840 = 0
⇒ n⁴ - 5n³ + 7n³ - 35n² + 34n² - 170n + 168n - 840 = 0
⇒ n³ ( n - 5 ) + 7n² ( n - 5 ) + 34n ( n - 5 ) + 168 ( n - 5 ) = 0
⇒ ( n - 5 ) ( n³ + 7n² + 34n + 168 ) = 0
⇒ ( n - 5 ) ( n³ + 6n² + n² + 6n + 28n + 168 ) = 0
⇒ ( n - 5 ) [ n² ( n + 6 ) + n ( n + 6 ) + 28 ( n + 6 ) ] = 0
⇒ ( n - 5 ) [ ( n + 6 ) ( n² + n + 28 ) ] = 0
⇒ ( n - 5 ) ( n + 6 ) ( n² + n + 28 ) = 0
Now,
( n - 5 ) = 0
⇒ n - 5 = 0
⇒ n = 5
Now,
( n + 6 ) = 0
⇒ n + 6 = 0
⇒ n = - 6
As n is a natural number, n = - 6 is unacceptable.
Now,
n² + n + 28 = 0
Comparing with ax² + bx + c = 0, we get,
- a = 1
- b = 1
- c = 28
b² - 4ac = 1² - 4 * 1 * 28
⇒ b² - 4ac = 1 - 4 * 28
⇒ b² - 4ac = 1 - 112
⇒ b² - 4ac = - 111
b² - 4ac < 0
∴ n ∉ N
∴ The value of n is 5.
Now,
First number = ( n - 1 )
⇒ First number = 5 - 1
⇒ First number = 4
Now,
Second number = n
⇒ Second number = 5
Now,
Third number = ( n + 1 )
⇒ Third number = 5 + 1
⇒ Third number = 6
Now,
Fourth number = ( n + 2 )
⇒ Fourth number = 5 + 2
⇒ Fourth number = 7
∴ The four consecutive natural numbers are 4, 5, 6, 7.