Math, asked by gaganthesavage, 7 months ago

1.
The ratio of areas of two triangles with equal base is 3:7. If the height of the smaller triangle is 5cm
then what is the corresponding height of the bigger triangle?​

Answers

Answered by MaIeficent
13

Step-by-step explanation:

\bf\underline{\underline{\red{Given:-}}}

  • The ratio of areas of two triangles with equal base is 3:7.

  • The height of the smaller triangle is 5cm.

\bf\underline{\underline{\blue{To\:Find:-}}}

  • The corresponding height of the bigger triangle.

\bf\underline{\underline{\green{Solution:-}}}

As, we know that:-

\boxed{ \rm \leadsto Area \: of \: triangle =  \frac{1}{2} \times base \times height }

\rm Area \: of \: 1st \: triangle \: A_{1} = \dfrac{1}{2} \times b_{1} \times h_{1}

\rm Area \: of \: 2nd \: triangle \: A_{2} = \dfrac{1}{2} \times b_{2} \times h_{2}

\rm Given, \:  both \: the \: triangles \: have \: equal \: base

\rm So, \: b_{1} = b_{2}

\rm The\: ratio \: of \: areas \: of \: the\: two\: triangles\: is \: 3:7

\rm  \implies  \dfrac{Area \: of \: 1st \: triangle}{ Area \: of \: 2nd \: triangle} =  \dfrac{3}{7}

\rm  \implies  \dfrac{A_{1}}{ A _{2} } =  \dfrac{3}{7}

\rm  \implies  \dfrac{ \dfrac{1}{2}  \times  b_{1} \times  h_{1} }{  \dfrac{1}{2} \times  b _{2}  \times  h_{2} } =  \dfrac{3}{7}

\rm  \implies  \dfrac{   b_{1} \times  h_{1} }{    b _{1}  \times  h_{2} } =  \dfrac{3}{7} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \big(   \because b_{1} =  b_{2} \big)

\rm  \implies  \dfrac{   h_{1} }{      h_{2} } =  \dfrac{3}{7}

\rm Height \: of \: smaller \: triangle \: (h_{1}) = 5cm

\rm  \implies  \dfrac{  5 }{      h_{2} } =  \dfrac{3}{7}

\rm  \implies        h_{2} =  \dfrac{7 \times 5}{3}

\rm  \implies        h_{2} =  \dfrac{35}{3}

\rm  \implies        h_{2} =  11.66

\underline{\boxed{\purple{\rm \therefore Height \: of \: bigger\: triangle = 11.66cm}}}

Similar questions