Math, asked by singaldelisha123, 7 months ago

1 the ratio of length and breadth of a rectangle is 4:3. If it’s breadth is 12 m find

(l) length of the rectangle
(ll) area of rectangle
(lll) perimeter of rectangle

Answers

Answered by Anonymous
4

\bf{\underline{Given}}

  • Ratio of length and breadth of a rectangle = 4:3
  • Breadth of the rectangle = 12 m

\bf{\underline{To\:find}}

(i) length of the rectangle

(ii) area of the rectangle

(iii) perimeter of the rectangle

\bf{\underline{Assumption}}

Let the common multiple of the ratio be x

Hence,

Length = 4x

Breadth = 3x

\bf{\underline{Solution}}

(i) Length of the rectangle :-

\sf{Breadth = 3x}

\sf{\implies 12 = 3x}

\sf{\implies x = \dfrac{12}{3}}

\sf{\implies x = 4}

Hence

\sf{Length = 4x = 4\times4 = 16\: m}

\sf{\therefore The\:length\:of\:the\:rectangle\:is\:16\:m}

_________________________________________

(ii) Area of the rectangle :-

\sf{Length = 16\:m}

\sf{Breadth = 12\:cm}

Hence,

\sf{Area = (Length\times Breadth)\:sq.units}

= \sf{Area = 16\times12}

= \sf{Area = 192\:m^2}

\sf{\therefore The\:area\:of\:the\:rectangle\:is\:192\:m^2}

_________________________________________

(iii) Perimeter of the rectangle:-

\sf{Length = 16\:m}

\sf{Breadth = 12\:m}

Hence,

\sf{Perimeter = 2(Length + Breadth)\:units}

= \sf{Perimeter = 2(16+12)\:m}

= \sf{Perimeter = 2\times18\:m}

= \sf{Perimeter = 36\:m}

\sf{\therefore The\:Perimeter\:of\:the\:rectangle\:is\:36\:m}

_________________________________________

\bf{\underline{Formulas}}

  • \sf{Area\: of \:rectangle = (Length\times Breadth)\:sq.units}

  • \sf{Perimeter\:of\:rectangle = 2(Length + Breadth)\:units}
Similar questions