Math, asked by swasti95, 3 months ago

1: The scale of a map is given as 1:30000000. Two cities are 4 cm apart on
the map. Find the actual distance between them.​

Answers

Answered by sanvi7031
5

Question:

The scale of a map is given as 1:30000000. Two cities are 4 cm apart on

the map. Find the actual distance between them.

Answer:

Let the map distance be x cm and actual distance be y cm, then

1 : 30000000 = x : y

 =  >  \frac{1}{3 \times  {10}^{7} }  =  \frac{x}{y}

Since x = 4 so,

 \frac{1}{3 \times  {10}^{7} }  =  \frac{4}{y}   \\  =  > y = 4 \times 3 \times  {10}^{7} = 12 \times  {10}^{7} cm \\  = 1200km

Thus, two cities, which are 4 cm apart on the map, are actually 1200 km away from each other.

Explanation:

  • You Know that a map is a miniature representation of a very large region.
  • A scale is usually given at the bottom of the map.
  • The scale shows a relationship between actual length and the length represented on the map.
  • The scale of the map is thus the ratio of the distance between two points on the map to the actual distance between two points on the large region.

  • For Example: If 1 cm on the map represents 8 km of actual distance [i.e., the scale is 1cm:8km or 1:800, 000] then 2 cm on the same map will represent 16 km.
  • Hence, we can Say that Scale of a map is based on the concept of Direct Proportion.
Similar questions