Math, asked by lupanggopaula, 8 months ago

1. The sides of a triangle are 18 cm, 24 cm and 34 cm. Find the length of the median to the 24 cm side.

Answers

Answered by Nekomari
2

Answer: 24.4cm

Step-by-step explanation:

4(M)^2 = 2(18)^2 + 2(34)^2 - (24)^2

4(M)^2 = 2385

M^2 = 2385÷4

M^2 = 596

M = sqrt (596)

M = 24.413

Attachments:
Answered by Manjula29
1

Let,s consider ABC is a Δ,

where, AB = 18cm.

            BC= 24cm.

            CA= 34cm.

According the question , we have to find out the length of the median to the 24 cm side.

We draw AD on BC in the point D.

Hence AD will be the median to the 24 cm side.

Let,s calculate the length of median AD:-

Median AD :- [√\frac{2AB^{2} }{4} + √\frac{2AC^{2} }{4} ⁻ √ \frac{BC^{2} }{4}] cm

                    ⇒[√ ( \frac{2AB^{2}+ 2 AC^{2} - BC^{2}   }{4}) ]cm

                    ⇒[√\frac{2 ( 18)^{2} + 2 (34)^{2}- (24)^{2}  }{4}] cm

                    ⇒[√(648 + 2312 - 576)÷4] cm

                    ⇒(√\frac{2384}{4} )cm

                    ⇒(√ 596)cm

                    ⇒ 24.41 cm

∴  The length of the median to the 24 cm side will be 24.41cm

Ans :-  The length of the median to the 24 cm side will be 24.41cm.

#SPJ3

Attachments:
Similar questions