Math, asked by joeldsouza020, 3 months ago

(1) The sides of a triangular field are 51m,37m and 20 m. Find the number of rose beds that can be prepared in the field if each rose bed occupies a space of 6 m?​

Answers

Answered by řåhûł
219

Given:

  • The sides of a triangular field are 51m,37m and 20 m.

To Find:

  • Number of rose beds that can be prepared in the field if each rose bed occupies a space of 6m

Solution:

First of all we need to find area of triangular field using heron's formula.

Semi - Perimeter :

s = 51 + 37 + 20/2

= 108/2

= 54 m.

Therefore,

Using Heron's formula :

= √s(s-a)(s-b)(s-c)

= √54 (54-51) (54-37) (54-20)

= √54 × 3 × 17 × 34

= 306 m²

Now,

Number of rose beds that can be prepared in field if each rose bed occupies a space of 6m :

= Total area of the triangular field/ Area occupied by each rose bed.

= 306/6

= 51

Hence, 51 rose beds can be prepared in the field if each rose bed occupies a space of 6m

Answered by ShírIey
321

❍ Sides of the Triangular filed are 20 m, 37 m and 51 m respectively.

To Calculate area of the triangle we'll use Heron's formula. Heron's formula is used to calculate the area of triangle.

S E M I – P E R I M E T E R :

\bf{\dag}\;\;\boxed{\sf{Semi - Perimeter = \bigg(\dfrac{Sum\;of\;all\; sides}{2}\bigg)}}

:\implies\sf S = \dfrac{a + b + c}{2}\\\\\\:\implies\sf S = \dfrac{51 + 37 + 20}{2} \\\\\\:\implies\sf S =\cancel \dfrac{ 108}{2}\\\\\\:\implies\underline{\boxed{\frak{S = 54\;m}}}

\rule{250px}{.3ex}

F I N D I N G⠀A R E A :

\bf{\star}\;\boxed{\sf{Area_{\triangle} = \Big(\sqrt{s(s - a)(s - b)(s - c)}\;\Big)}}

\frak{we\;have}\begin{cases}\sf{ \:  \: a = 20 \;m}&\\\sf{ \:  \: b = 51\:m}&\\\sf{ \:  \: c = 37\;m}&\\\sf{ \:  \: s = 54\;m}\end{cases}

\underline{\bf{\dag} \:\mathfrak{Substituting\;given\;values\: :}}⠀⠀⠀⠀

:\implies\sf Area_{\triangle} = \sqrt{54(54 -20)(54 - 51)(54 - 37)}\\\\\\:\implies\sf Area_{\triangle}  = \sqrt{54 \times 34 \times 3 \times 17} \\\\\\:\implies\sf Area_{\triangle}  = \sqrt{2\times 3\times 3 \times 3 \times 2 \times 17 \times 3 \times 17}\\\\\\:\implies\sf Area_{\triangle}  = 2 \times 3 \times 3 \times 17\\\\\\:\implies\underline{\boxed{\frak{\pink{Area_{\triangle} = 306\;m^2}}}}\;\bigstar

N O.⠀O F⠀R O S E :

  • It is given that, each rose bed occupies space of 6 m. Therefore,

➠ Ar. or field/Ar. of rose

➠ 306/6

51

\therefore{\underline{\textsf{Hence, \;number\;of\;roses\;that\;can\;be\; prepared\;are\;\textbf{51}.}}}⠀⠀⠀⠀

Similar questions