1. The simplified value of 2 log 5 + log 8 - 1/2 log 4 is
2. log [1 – (1 - (1 – x^2)^-1)^-1]^1/2 can be written as
3. The simplified value of log, 4√7293√9^-1.27^-4/3 is
Answers
2log5+log8−1/2log4
2log5+log8−1/2log4 Let us simplify the expression,
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2=2log10
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2=2log10=2(1)
2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2=2log10=2(1)=2