Math, asked by Mehnz, 6 months ago


1. The simplified value of 2 log 5 + log 8 - 1/2 log 4 is

2. log [1 – (1 - (1 – x^2)^-1)^-1]^1/2 can be written as

3. The simplified value of log, 4√7293√9^-1.27^-4/3 is

Answers

Answered by Anonymous
63

2log5+log8−1/2log4

2log5+log8−1/2log4 Let us simplify the expression,

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2=2log10

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2=2log10=2(1)

2log5+log8−1/2log4 Let us simplify the expression,2log5+log8−1/2log4=log5 2+log8−1/2log2 2 =log25+log8−1/2×2log2=log25+log8−log2=log(25×8)/2=log(25×4)=log100=log10 2=2log10=2(1)=2

Similar questions