1. The
solution of the difficult
equation
cos^2 x d^2y/dx^2 = 1 is
Answers
Step-by-step explanation:
We have,
Integrating both sides,
Integrating both sides,
Answer:
We have,
\begin{gathered} \cos^{2} (x) . \frac{ {d}^{2} y}{d {x}^{2} } = 1 \\ \end{gathered}
cos
2
(x).
dx
2
d
2
y
=1
\begin{gathered} \implies \frac{ {d}^{2} y}{d {x}^{2} } = \sec^{2} (x) \\ \end{gathered}
⟹
dx
2
d
2
y
=sec
2
(x)
\begin{gathered} \implies \: d( \frac{dy}{dx} ) = \sec^{2} (x) dx \\ \end{gathered}
⟹d(
dx
dy
)=sec
2
(x)dx
Integrating both sides,
\begin{gathered} \implies \: \int \: d( \frac{dy}{dx} ) = \int\sec^{2} (x) dx \\ \end{gathered}
⟹∫d(
dx
dy
)=∫sec
2
(x)dx
\begin{gathered} \implies \frac{dy}{dx} = \tan(x) + c_{1} \\ \end{gathered}
⟹
dx
dy
=tan(x)+c
1
\begin{gathered}\implies \: dy = ( \tan(x) + c _{1})dx \\ \end{gathered}
⟹dy=(tan(x)+c
1
)dx
Integrating both sides,
\begin{gathered}\implies \: \int dy = \int( \tan(x) + c _{1})dx \\ \end{gathered}
⟹∫dy=∫(tan(x)+c
1
)dx
\begin{gathered}\implies \: y = ln( \sec(x) ) + c_{1}x + c_{2} \\ \end{gathered}
⟹y=ln(sec(x))+c
1
x+c
2