Math, asked by rajuraniramidi, 3 days ago

1 The square root of (ab-ac-bc)²+ 4abc(a+b) a) ab+bc+ca b) a+b+c c) a-b-c d) None 52)​

Answers

Answered by vrutti1806
2

Step-by-step explanation:

17 hours ago — 1 The square root of (ab-ac-bc)²+ 4abc(a+b) a) ab+bc+ca b) a+b+c c) a-b-c d) None 52) Get the answers you need, now!

(ab+ac+bc)^(2)-4abc(a+c) is [ (A) ab+ac-bc (B) ab+a+b (C) ab-ac+bc (D) ab+ac-bc]]

Answered by pulakmath007
7

The square root of (ab - ac - bc)² + 4abc(a + b) is ab + bc + ca

Given :

The expression (ab - ac - bc)² + 4abc(a + b)

To find :

The square root of (ab - ac - bc)² + 4abc(a + b) is

a) ab + bc + ca

b) a + b + c

c) a - b - c

d) None

Solution :

Step 1 of 3 :

Write down the given expression

The given expression is

(ab - ac - bc)² + 4abc(a + b)

Step 2 of 3 :

Express the expression

 \sf  {(ab - ac - bc)}^{2}  + 4abc(a + b)

 \sf   = {(ab - ac - bc)}^{2}  + 4ab(ac + bc)

We take

x = ab and y = ac + bc

Then we have

 \sf  {(ab - ac - bc)}^{2}  + 4abc(a + b)

 \sf   = {(x - y)}^{2}  + 4xy

 \sf   = {(x  + y)}^{2}

 \sf   = {(ab + ac + bc  )}^{2}

Step 3 of 3 :

Find square root of (ab - ac - bc)² + 4abc(a + b)

The square root of (ab - ac - bc)² + 4abc(a + b)

 \sf   =  \sqrt{ {(ab - ac - bc)}^{2}  + 4abc(a + b)}

 \sf   = \sqrt{  {(ab + ac + bc  )}^{2}}

 \sf = (ab + ac + bc  )

 =  \sf \: (ab + bc  + ca )

Hence the correct option is a) ab + bc + ca

Similar questions