Math, asked by thakursoniya1213, 8 months ago

1. The sum of the two angle of an quadrilateral is 145 • The other two angle are in the radio 2:3. Find the angles.
2. The area of x-square field is 2025 square meter. Fund the cost of fencing the field at Rs. 15 per meter.​

Answers

Answered by SarcasticL0ve
7

{\underline{\underline{\bf{\blue{QueStion\;1\;:}}}}}

The sum of the two angle of an quadrilateral is 145 • The other two angle are in the radio 2:3. Find the angles.

⠀⠀⠀⠀⠀⠀⠀

{\underline{\underline{\bf{\green{AnswEr\;:}}}}}

⠀⠀⠀⠀⠀⠀⠀

GivEn:

  • The sum of the two angle of an quadrilateral is 145°
  • Ratio of other two angles = 2:3

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Measure of angles?

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

{\underline{\bf{\bigstar\;As\;per\;givEn\;Question\;:}}}

⠀⠀⠀⠀⠀⠀⠀

The sum of the two angle of an quadrilateral is 145°

Ratio of other two angles = 2:3

⠀⠀⠀⠀⠀⠀⠀

☯ Let these two angles be 2x and 3x.

⠀⠀⠀⠀⠀⠀⠀

We know that,

Sum of all angles of a quadrilateral is 360°.

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 145^\circ + 2x + 3x = 360^\circ

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 145^\circ + 5x = 360^\circ

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 5x = 360^\circ - 145^\circ

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 5x = 215^\circ

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf x = \cancel{ \dfrac{215^\circ}{5}}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\bf{\pink{43^\circ}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

Therefore, Other measure of two angles are:

  • 2x = 2 × 43 = 86°
  • 3x = 3 × 43 = 129°

━━━━━━━━━━━━━━━

{\underline{\underline{\bf{\blue{QueStion\;2\;:}}}}}

⠀⠀⠀⠀⠀⠀⠀

The area of a square field is 2025 m². Find the cost of fencing the field at Rs. 15 per meter.

⠀⠀⠀⠀⠀⠀⠀

{\underline{\underline{\bf{\green{AnswEr\;:}}}}}

⠀⠀⠀⠀⠀⠀⠀

GivEn:

  • The area of a square field is 2025 m².

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Find the cost of fencing the field at Rs. 15 per meter.

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

☯ Let side of square field be x.

⠀⠀⠀⠀⠀⠀⠀

{\underline{\bf{\bigstar\;As\;per\;givEn\;Question\;:}}}

⠀⠀⠀⠀⠀⠀⠀

The area of a square field is 2025 m².

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;\bf Area_{\;(square)} = side \times side

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\small\sf \underline{Putting\;values\;:}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf x^2 = 2025

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\small\sf \underline{Taking\;sqrt.\;both\;sides\;:}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{x^2} = \sqrt{2025}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\bf{\pink{x = 45}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore Side of square field is 45 m.

━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;\bf Perimeter_{\;(square)} = 4 \times side

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\small\sf \underline{Putting\;values\;:}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Perimeter_{\;(field)} = 4 \times 45

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\bf{\pink{Perimeter_{\;(field)} = 180\;m}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore The cost of fencing the field = 180 × 15 = Rs. 2700

Similar questions