Math, asked by lawandeadinath70, 3 months ago










1.
The top of a ladder of length 15 m reaches a window 9 m above the ground. What is
the distance between the base of the wall and that of the ladder ?

Answers

Answered by diajain01
73

{\boxed{\underline{\tt{\orange{Required  \:  \: answer \:  \:  is  \:  \: as  \:  \: follows:-}}}}}

★GIVEN:-

  • AC = 15m

  • AB = 9m

★TO FIND:-

  • BC (distance between base of the wall and ladder)

★FORMULA USED:-

Pythagoras theorem:-

  • \displaystyle\sf{Hypotenuse^2 = Base^2 + Perpendicular^2}

★SOLUTION:-

In ∆ABC,

We will use pythagoras theorem:-

 :  \longrightarrow\displaystyle\sf{AC ^2 = AB^2+BC^2}

 :  \longrightarrow \displaystyle \sf{ {(15)}^{2}  =  {(9)}^{2}  + {BC}^{2}  }

 :  \longrightarrow \displaystyle \sf{BC =  \sqrt{225 - 81} }

 :  \longrightarrow \displaystyle \sf{BC =  \sqrt{144} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \displaystyle{ \sf {\bf{ \boxed{ \underline{ \purple{ \huge{BC = 12m}}}}}}}

Attachments:
Similar questions