Math, asked by alfiya465, 4 months ago

1. The value of sigma r=1 to n nPr/r! is

Attachments:

Answers

Answered by pulakmath007
8

SOLUTION

TO DETERMINE

The value of

\displaystyle \sum\limits_{r=1}^{n}   \:  \: \frac{ {}^{n} P_r }{r \: !}

EVALUATION

Here the given expression is

\displaystyle \sum\limits_{r=1}^{n}  \frac{ {}^{n} P_r }{r \: !}

We now simplify it

\displaystyle \sum\limits_{r=1}^{n}  \frac{ {}^{n} P_r }{r \: !}

 = \displaystyle \sum\limits_{r=1}^{n}  \frac{n\: ! }{(n - r) ! \: r \: !}

 = \displaystyle \sum\limits_{r=1}^{n}    \: \: {}^{n}C_r

Now we are aware of the Binomial Expansion that

 {(1 + x)}^{n}  = 1 +  {}^{n}C_1 \: x +   {}^{n}C_2  {x}^{2}  + .... +  {}^{n}C_n  \:  {x}^{n}

Putting x = 1 we get

 {(1 + 1)}^{n}  = 1 +  {}^{n}C_1  +   {}^{n}C_2    + .... +  {}^{n}C_n  \:

 \implies  1 +  {}^{n}C_1  +   {}^{n}C_2    + .... +  {}^{n}C_n  =  {2}^{n}  \:

 \implies    {}^{n}C_1  +   {}^{n}C_2    + .... +  {}^{n}C_n  =  {2}^{n}  - 1 \:

 \implies \:  \: \displaystyle \sum\limits_{r=1}^{n}    \: \: {}^{n}C_r    =  {2}^{n}  - 1

Hence

\displaystyle \sum\limits_{i=1}^{n}   \:  \: \frac{ {}^{n} P_r }{r \: !}

 = \displaystyle \sum\limits_{r=1}^{n}    \: \: {}^{n}C_r

 =  {2}^{n}  - 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The value of 20 sigma 50-r C6 is equal to

https://brainly.in/question/25207335

2. If nPr = 3024 and nCr = 126

then find n and r.

https://brainly.in/question/29044585

Answered by thatsgirijag
0

Answer:

2^n-1

Step-by-step explanation:

answer is in the attachment below

Attachments:
Similar questions