1.The value of tan A is always less than 1. 2. cos A is the abbreviation used for the cosecant of angle A.
3. The value of cos increases as increases.
4. Zeroes of quadratic polynomial x 2 + 7x + 10 are 2 and -5
5. Sum of zeroes of 2x 2 - 8x + 6 is -4
6. A polynomial of degree n has exactly n zeros.
7. Graph of a quadratic polynomial is an ellipse.
8. 1/0 is not rational.
9. Every fraction is a rational number.
Answers
Answer:
∠B=90
∠B=90 o
∠B=90 o , AB=3,BC=4,AC=5
∠B=90 o , AB=3,BC=4,AC=5tanA=
∠B=90 o , AB=3,BC=4,AC=5tanA= 3
∠B=90 o , AB=3,BC=4,AC=5tanA= 34
∠B=90 o , AB=3,BC=4,AC=5tanA= 34
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) True
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x)
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x)
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 ,
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC=
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x (it is possible) Pythagoras theorem
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x (it is possible) Pythagoras theorem(iii) False
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x (it is possible) Pythagoras theorem(iii) FalsecosA is cosine A, cscA is cosecant
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x (it is possible) Pythagoras theorem(iii) FalsecosA is cosine A, cscA is cosecant (iv) False
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x (it is possible) Pythagoras theorem(iii) FalsecosA is cosine A, cscA is cosecant (iv) FalsecotA = cotangent of ∠A not product of cot and A.
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x (it is possible) Pythagoras theorem(iii) FalsecosA is cosine A, cscA is cosecant (iv) FalsecotA = cotangent of ∠A not product of cot and A.(v) False
∠B=90 o , AB=3,BC=4,AC=5tanA= 34 >d. ...(AC 2 =AB 2 +BC 2 )(ii) TrueAC 2 =AB 2 +BC 2 (12x) 2 =(5x) 2 +BC 2 , BC= 119x (it is possible) Pythagoras theorem(iii) FalsecosA is cosine A, cscA is cosecant (iv) FalsecotA = cotangent of ∠A not product of cot and A.(v) Falsesin θ=
θ= hypotenuse
θ= hypotenuseperpendicular
θ= hypotenuseperpendicular
θ= hypotenuseperpendicular
θ= hypotenuseperpendicular sinθ>1;
θ= hypotenuseperpendicular sinθ>1; 3
θ= hypotenuseperpendicular sinθ>1; 34
θ= hypotenuseperpendicular sinθ>1; 34
θ= hypotenuseperpendicular sinθ>1; 34 >1 [∵ hypotenuse > base > perpendicular]
θ= hypotenuseperpendicular sinθ>1; 34 >1 [∵ hypotenuse > base > perpendicular]sinθ will always less than 1.
Answer:
student 0007 has deleted my answer bro what wrong in asking to be frnd is that anything such wrong from me bro student0007.. asking to be a frnd is wrong wt bro