Math, asked by RashmiMansoriya, 5 days ago

1. Two cross roads, each of width 10 m, cut at right angles through the centre of a rectangular park of length 750 m and breadth 350 m are parallel to its sides. Find the area of the roads. Also, find the area of the park excluding cross roads. Convert the area in hectares. [1 hectare = 10000 m²]

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that, Two cross roads, each of width 10 m, cut at right angles through the centre of a rectangular park of length 750 m and breadth 350 m are parallel to its sides.

Let assume that ABCD be a rectangular park such that AB = 750 m and BC = 350 m

So,

\rm \: Area_{(ABCD)} = Length \times Breadth \\

\rm \: Area_{(ABCD)} = AB \times BC \\

\rm \: Area_{(ABCD)} = 750 \times 350 \\

\rm\implies \:Area_{(ABCD)} = 262500 \:  {m}^{2}  \\

Now, Let further assume that EFGH and PQRS be the two cross roads of width 10 m, running parallel to AB and BC.

Dimensions of EFGH

  • Length, EF = 750 m

  • Breadth, FG = 10 m

So,

\rm \: Area_{(EFGH)} = Length \times Breadth \\

\rm \: Area_{(EFGH)} = EF \times FG \\

\rm \: Area_{(EFGH)} = 750 \times 10 \\

\rm\implies \:\rm \: Area_{(EFGH)} = 7500 \:  {m}^{2}  \\

Dimensions of PQRS

  • Length, PQ = 350 m

  • Breadth, QR = 10 m

So,

\rm \: Area_{(PQRS)} = Length \times Breadth \\

\rm \: Area_{(PQRS)} = PQ \times QR \\

\rm \: Area_{(PQRS)} = 350 \times 10 \\

\rm\implies \:\rm \: Area_{(PQRS)} = 3500 \:  {m}^{2}  \\

Now,

\rm \: Area_{(cross\:roads)} \\

\rm \:  =  \: Area_{(EFGH)} + Area_{(PQRS)} - Area_{(square \: KLMN)} \\

\rm \:  =  \: 7500 + 3500 - 10 \times 10 \\

\rm \:  =  \: 11000 - 100 \\

\rm \:  =  \: 10900 \:  {m}^{2}  \\

\rm \:  =  \: \dfrac{10900}{10000}  \: hectares \\

\rm \:  =  \: 1.09 \: hectares \\

So,

\color{green}\rm\implies \:\boxed{ \rm{ \:Area_{(cross\:roads)} \:  =  \: 1.09 \: hectares  \:  \: }} \\

Now,

\rm \: Area_{(park \: without \: cross \: roads)} \\

\rm \:  =  \: Area_{(ABCD)} - Area_{(cross\:roads)} \\

\rm \:  =  \: 262500 - 10900 \\

\rm \:  =  \: 251600 \:  {m}^{2}  \\

\rm \:  =  \: \dfrac{251600}{10000} \: hectares \\

\rm \:  =  \: 25.16 \: hectares \\

Hence,

\color{green}\rm\implies \:\boxed{ \rm{ \: Area_{(park \: without \: cross \: roads)} = 25.16 \: hectares \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions