Math, asked by Anonymous, 2 months ago

1. Two numbers are in the ratio 7: 11. If 7 is added to each of the numbers, the ratio becomes 2: 3. Find the numbers.

2. What number must be added to each term of the ratio 7 : 12 to make it 2 : 3​

Answers

Answered by Anonymous
5

Given: (1)

  • Two numbers are in the ratio 7: 11. If 7 is added to each of the numbers, the ratio becomes 2: 3. Find the numbers.

Solution:

The given ratio is 7 : 11.

Let the two numbers be 7x and 11x, where

  • x is the consonant of proportionality.

{ \boldsymbol{ \underline{ \pink{According \:  to \:  the \:  question : }}}} \\

 \\  \sf \:  \:  \:  \:  \:  \:  \:    \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \:\frac{7x + 7}{11x + 7}  =   \frac{2}{3}  \\

  \:  \:  \:  \: \implies \sf \: 3(7x + 7) = 2(11x + 7) \\  \\   \:  \:  \:  \:  \implies \:  \sf \:  \: 21x + 21 = 22x + 14 \\  \\  \implies \sf  \: 21x - 22x = 14 - 21 \\  \\  \:  \:  \:  \:  \implies \:  \:  \: \:  \:  \:  \:  \:  \:  \:\sf   \:  - x   \:  \:  \:  \: =    - 7\:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \\  \\  \implies \:  \:  \: \:  \:  \:  \:  \:  \:  \:\sf   \:   x   \:  \:  \:  \: =    7\:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \\  \\

So,

  • 7x = 7 × 7 = 49

  • 11x = 11 × 7 = 77

⠀⠀⠀Hence, The numbers are 49 and 76

________________________________________

Given: (2)

  • What number must be added to each term of the ratio 7 : 12 to make it 2 : 3?

Solution:

The given ratio is 7 : 12.

Let the required number to be added to each term of the ratio be x .

  \\ \sf \: Then,  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{7 + x}{12 + x}  =  \frac{2}{3}  \\

 \\  \sf \implies 3(7 + x) = 2(12 + x) \\  \\  \sf \implies \: 21 + 3x = 24 + 2x \\  \\  \sf \implies \: 3x - 2x = 24 - 21 \\  \\  \sf \implies \: \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   x = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

Hence, 3 must be added to each term of the ratio.

________________________________________

⠀⠀⠀⠀⠀⠀Hope it helps you!

⠀⠀⠀⠀⠀⠀⠀Stay Home! Stay Safe!

Similar questions