Math, asked by sheenack, 11 months ago

1.
two numbers differ by 3. The sum of the greater number and twice the smaller number is 15
Find the smaller number.​

Answers

Answered by shrushtikarale
0

Step-by-step explanation:

the two numbers are x and y

bigger no. be x and smaller no be y

from 1st condition

x-y=3......(1)

from 2nd condition

x+2y=15....(2)

multiply by 1 equation 2

2x-2y=6....(3)

add equ 2 and 3

2x-2y=6

+

x+2y=15

________

3x=21

x=7

put in 1st equation

7-y=3

-y=3-7

-y=-4

y=4

the smaller number be 4

Answered by TRISHNADEVI
3

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \: Given, \: }} \\  \\  \text{ \red{The difference between the numbers = 3}} \\  \\  \text{ \red{The sum of the greater number and twice }} \\  \text{ \red{the smaller number = 15}} \\  \\  \underline{ \mathfrak{ \:Suppose, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \: \text {\pink{The greater number = x}} \\  \\  \:  \:  \:  \:  \:  \:  \:   \text{ \pink{The smaller number = y}}

 \bold{ \underline{ \:  \: A.T.Q., \:  \: }} \\  \\  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \sf{ \blue{x - y = 3 \:  \:  \:  ------> (1)}} \\  \\  \bold{And, } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \blue{x + 2y  = 15  \:  \: -----> (2)}} \\  \\  \underline{ \bold{ \: Now, \: }} \\  \\  \sf{ \blue{ (1) \implies x = 3 + y  -----> (3)}}

 \underline{ \text{ \: Putting the value of  \pink{x} from eq. (3) in eq.(2), we get, \: }} \\  \\  \tt{(2) \implies x + 2y  = 15} \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{ \implies (3 + y) + 2y = 15} \\  \\ \:  \:  \:  \:  \:  \:  \:  \tt{ \implies 3 + y + 2y = 15} \\  \\   \:  \:  \:  \:  \:  \:  \:\tt{ \implies 3 + 3y = 15  } \\  \\   \:  \:  \:  \:  \:  \:  \:\tt{\implies 3y = 15 - 3 } \\  \\  \:  \:  \:  \:  \:  \:  \: \tt{\implies 3y = 12} \\  \\  \:  \:  \:  \:  \:  \:  \: \tt{ \implies y = \frac{12}{3} } \\  \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \: \tt{\therefore \:  \:  \pink{ y = 4}} \\  \\  \therefore  \:  \:  \text{ \pink{The smallest number, y =  \underline {\: 4  \:} }}

 \underline{\underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: }}\\  \\  \underline{ \mathfrak{ \:  \: Again, \:  \: }} \\  \\   \underline{ \text{ \: Putting the value of  \pink{y} in eq. (3), we get, \: }} \\ \\   \tt{(3) \implies x = 3 + y } \\  \\  \:  \:  \:  \:  \:  \:  \:  \tt{\implies x = 3 + 4 } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{\therefore \:  \:  \pink{ x = 7}} \\  \\ \therefore \:  \:  \text{ \pink{The greater number =  \underline {\: 7 \: }}}

Similar questions