Math, asked by pradipkumarg9820, 11 months ago

(1+under root 2)upon (1-under root2)

Answers

Answered by ksonakshi70
1

Answer:

 \frac{1 +  \sqrt{2} }{1 -  \sqrt{2} }  =  \frac{1 +  \sqrt{2} }{1 -  \sqrt{2} }  \times  \frac{1 +  \sqrt{2} }{1 +  \sqrt{2} }  \\  =  \frac{(1 +  \sqrt{2} ) {}^{2} }{1 {}^{2}  -  (\sqrt{2}) {}^{2}  }  \\  =  \frac{1 {}^{2} + ( \sqrt{2} ) {}^{2} + 2 \times  \sqrt{2}    \times 1}{1 - 2}  \\  =  \frac{1 + 2 + 2 \sqrt{2} }{ - 1}  \\  =  - (1 + 2 + 2 \sqrt{2} ) \\  =  - 3 - 2 \sqrt{2}

Similar questions