Math, asked by jgb, 1 year ago

1-underroot 3iota÷1+underroot3iota rationlise it please

Answers

Answered by TPS
1

 \frac{1 -  \sqrt{3} i}{1  +  \sqrt{3} i} \\  \\  =  \frac{1 -  \sqrt{3} i}{1  +  \sqrt{3} i} \times  \frac{1 -  \sqrt{3} i}{1 - \sqrt{3} i}

=  \frac{(1 -  \sqrt{3} i) \times (  1 -  \sqrt{3} i) }{(1  +  \sqrt{3} i) \times ( 1 -  \sqrt{3} i) }  \\  \\   = \frac{ {(1 -  \sqrt{3} i)}^{2} }{ {1}^{2} -  { (\sqrt{3}i)}^{2}  }

= \frac{ 1 - 3 - 2 \sqrt{3}i  }{1 + 3} \\  \\  =  \frac{ - 2 - 2 \sqrt{3}i }{4}

=  -  \frac{ 1 + \sqrt{3}i }{2} \\
Similar questions