1 upon 1+ root 2 + 1 upon root 2 + root 3 + 1 upon root 3 + root 4 + 1 upon root 4 + root 5 + 1 upon root 5 + root 6.... +1 upon root 8 + root 9=2 rationalising the denominator
Answers
Answered by
4
1/(1 + √2) + 1/(√2 + √3) + 1/(√3 + √4)..
.....1/(√8 + √9) = 1
now, 1/(1 + √2) = (1 - √2)/(1 + √2)(1 - √2)
(1 - √2)/(1 - 2) = (√2 - 1)
1/(√2 - √3) = (√2 + √3)/(√2 - √3)(√2 + √3)
(√2 + √3)/(2 - 3) = (√3 - √2)
and so, on.....
√2 - 1 + √3 - √2 + √4 - √3 +.......√9 - √8
= 3
.....1/(√8 + √9) = 1
now, 1/(1 + √2) = (1 - √2)/(1 + √2)(1 - √2)
(1 - √2)/(1 - 2) = (√2 - 1)
1/(√2 - √3) = (√2 + √3)/(√2 - √3)(√2 + √3)
(√2 + √3)/(2 - 3) = (√3 - √2)
and so, on.....
√2 - 1 + √3 - √2 + √4 - √3 +.......√9 - √8
= 3
Answered by
14
Answer:
Step-by-step explanation:
1/(1 + √2) + 1/(√2 + √3) + 1/(√3 + √4)..
.....1/(√8 + √9)
now, 1/(1 + √2) = (1 - √2)/[(1 + √2)(1 - √2)]
(1 - √2)/(1 - 2) = (√2 - 1)
1/(√2 + √3) = (√2 -√3)/[(√2 + √3)(√2 -√3)]
(√2 - √3)/(2 - 3) = (√3 - √2)
and so, on.....
After rationalising each term u get
√2-1+√3-√2+√4-√3+√5-√4+√6-√5+
√7-√6+√8-√7+√9-√8
= -1 +√9
= -1 + 3
=2.
Similar questions