Math, asked by aditya7573, 1 year ago

1 upon 2 + root 5 + 1 upon root 5 + root 6 + 1 upon root 6 + root 7 + 1 upon root 7 + root 8

Attachments:

Answers

Answered by cricketputup7tpjx
48
If i am wrong, then please correct me.
Attachments:
Answered by dikshaagarwal4442
4

Answer:

\frac{1}{2+\sqrt{5} } + \frac{1}{\sqrt{5}+\sqrt{6} }  + \frac{1}{\sqrt{6}+\sqrt{7}  } + \frac{1}{\sqrt{7}+\sqrt{8}  } = 2(√2 - 1)

Step-by-step explanation:

We have to simplify the expression: \frac{1}{2+\sqrt{5} } + \frac{1}{\sqrt{5}+\sqrt{6} }  + \frac{1}{\sqrt{6}+\sqrt{7}  } + \frac{1}{\sqrt{7}+\sqrt{8}  }

At 1st we will simplify each term, then add them.

  • Simplification of  \frac{1}{2+\sqrt{5} }:

         \frac{1}{2+\sqrt{5} }

       = \frac{1*(2-\sqrt{5})}{(2+\sqrt{5})(2-\sqrt{5}) } [ By multiplying (2-√5) to nominator and de-nominator]

        = \frac{2-\sqrt{5} }{2^{2}-\sqrt{5} ^{2}  }            [as (a+b)(a-b) = a²-b²]

        = - (2- √5) = -2+√5

  • Simplification of  \frac{1}{\sqrt{5}+\sqrt{6}  }:

       \frac{1}{\sqrt{5}+\sqrt{6}  }

  = \frac{\sqrt{5}-\sqrt{6} }{(\sqrt{5}+\sqrt{6})(\sqrt{5}-\sqrt{6} )  } [By multiplying (√5-√6)to nominator and de-nominator]

    = \frac{\sqrt{5}-\sqrt{6}  }{\sqrt{5} ^{2} - \sqrt{6} ^{2}   }            [as (a+b)(a-b) = a²-b²]

    = - (√5-√6) = -√5+√6

  • Simplification of  \frac{1}{\sqrt{6}+\sqrt{7}  }:

        \frac{1}{\sqrt{6}+\sqrt{7}  }

  = \frac{\sqrt{6}-\sqrt{7} }{(\sqrt{6}+\sqrt{7})(\sqrt{6}-\sqrt{7} )  } [By multiplying (√6-√7)to nominator and de-nominator]

    = \frac{\sqrt{6}-\sqrt{7}  }{\sqrt{6} ^{2} - \sqrt{7} ^{2}   }            [as (a+b)(a-b) = a²-b²]

    = - (√6-√7) = -√6+√7

  • Simplification of  \frac{1}{\sqrt{7}+\sqrt{8}  }:

       \frac{1}{\sqrt{7}+\sqrt{8}  }

  = \frac{\sqrt{7}-\sqrt{8} }{(\sqrt{7}+\sqrt{8})(\sqrt{7}-\sqrt{8} )  } [By multiplying (√7-√8)to nominator and de-nominator]

    = \frac{\sqrt{7}-\sqrt{8}  }{\sqrt{7} ^{2} - \sqrt{8} ^{2}   }            [as (a+b)(a-b) = a²-b²]

    = - (√7-√8) = -√7+√8

  • Addition:

                       \frac{1}{2+\sqrt{5} } + \frac{1}{\sqrt{5}+\sqrt{6} }  + \frac{1}{\sqrt{6}+\sqrt{7}  } + \frac{1}{\sqrt{7}+\sqrt{8}  }

                   = (-2+√5) + (-√5+√6) + (-√6+√7) + (-√7+√8)

                   = -2+√5-√5+√6-√6+√7-√7+√8

                   = -2 +√8

                   = -2 + 2√2

                   = 2(√2 - 1)

Similar questions