1. Use a suitable identity to get each of the following products.
0 (x+3)(x + 3) (i) (2y + 5) (2y + 5) (m) (2a-7) (2a - 7)
Answers
Answered by
130
Solution:-
i) (x + 3)(x + 3)
⇒ (x + 3)²
[Identity used: (a + b)² = a² + b² + 2ab ]
⇒ x² + 3² + 2 * x * 3
⇒ x² + 9 + 6x
⇒ x² + 6x + 9 [Answer]
ii) (2y + 5)(2y + 5)
⇒ (2y + 5)²
[Identity used: (a + b)² = a² + b² + 2ab ]
⇒ (2y)² + 5² + 2 × 2y × 5
⇒ 4y² + 25 + 20y
⇒ 4y² + 20y + 25 [Answer]
iii) (2a - 7)(2a - 7)
⇒ (2a - 7)²
[Identity used: (a - b)² = a² + b² - 2ab ]
⇒ (2a)² + 7² - 2 × 2a × 7
⇒ 4a² + 49 - 28a
⇒ 4a² - 28a + 49 [Answer]
Similar more identities:-
- a² - b² = (a + b)(a - b)
- (x + a)(x + b) = x² + (a + b)x + ab
- (a + b)² = (a - b)² + 4ab
- (a - b)² = (a + b)² - 4ab
- a² + b² = (a + b)² - 2ab
- a² + b² = (a - b)² + 2ab
Answered by
18
Answer:
(i)x(x+3)+3(x+3)
=x^2+3x+3x+9
=x^2+6x+9 ans
(ii)(2y+5)(2y+5)
=2y(2y+5)+5(2y+5)
=4y^2+10y+10y+25
=4y^2+20y+25 ans
(iii)(2a-7)(2a-7)
=2a(2a-7)-7(2a-7)
=4a^2-14a-14a+49
=4a^a-28a+49 ans
Step-by-step explanation:
I hope its help you
Similar questions