Math, asked by Anonymous, 3 months ago

1. Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

2. Given that HCF (306, 657) = 9, find LCM (306, 657).​

Answers

Answered by ItzMeMukku
14

\large\bf{\underline{\underline{Answer\:1}}}

Let\red{\bf {'a'}}be any positive integer.

On dividing it by 3 , let 'q' be the quotient and 'r' be the remainder.

\red{\bf {Such\: that}}

\underline{\boxed{\sf\purple{a = 3q + r}}}

\red{\bf {where}}

\underline{\boxed{\sf\purple{r = 0 ,1 , 2}}}

\red{\bf {When}}

\underline{\boxed{\sf\purple{r = 0}}}

\mapsto\bf{r = 25\:m}∴ a = 3q

\red{\bf {When}}

\underline{\boxed{\sf\purple{r = 1}}}

\mapsto\bf{∴ a = 3q + 1}

\red{\bf {When}}

\underline{\boxed{\sf\purple{r = 2}}}

\mapsto\bf{∴ a = 3q + 2}

\red{\bf {When}}

\underline{\boxed{\sf\purple{a = 3q}}}

\textbf{On squaring both the sides,}

\begin{gathered} {a}^{2} = 9 {q}^{2} \\ {a}^{2} = 3 \times (3 {q}^{2} ) \\ {a}^{2} = 3 \\ where \: m = 3 {q}^{2} \end{gathered}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\pink{\bigstar}★ \large\underline{\boxed{\bf\pink{When, \:a = 3q + 1}}}

\textbf{On squaring both the sides ,}

\begin{gathered} {a}^{2} = (3q + 1)^{2} \\ {a}^{2} = 9 {q}^{2} + 2 \times 3q \times 1 + {1}^{2} \\ {a}^{2} = 9 {q}^{2} + 6q + 1 \\ {a}^{2} = 3(3 {q}^{2} + 2q) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 2q\end{gathered}

\red{\bf {When\:, a \:= \:3q\: + \:2}}

\textbf{On squaring both the sides,}

\\ \\

\begin{gathered} {a}^{2} = (3q + 2)^{2} \\ {a}^{2} = 3 {q}^{2} + 2 \times 3q \times 2 + {2}^{2} \\ {a}^{2} = 9 {q}^{2} + 12q + 4 \\ {a}^{2} = (9 {q}^{2} + 12q + 3) + 1 \\ {a}^{2} = 3(3 {q}^{2} + 4q + 1) + 1 \\ {a}^{2} = 3m + 1 \\ where \: m \: = 3 {q}^{2} + 4q + 1\end{gathered}

\bold{Therefore ,}

\\ \\

the square of any positive integer is either of the form\red{\bf {3m\: or\: 3m\:+\:1.}}

\large\bf{\underline{\underline{Answer\:2}}}

LCM of \red{\bf {306}} and \red{\bf {657}} is \red{\bf {22338}}

\large\bf{\underline{\underline{Let\: us\: see}}}

how to find the HCF of\red{\bf {306}}and \red{\bf {657}}

\large\bf{\underline{\underline{Explanation}}}

We will use the formula to find the LCM of 306 and 657.

LCM (a, b) = (a × b) / HCF (a, b)

Given two numbers 306 and 657 and their HCF is 9.

\bold{To \:find :}

LCM (306,657 )

Using the formula,

\\ \\

\bold{We have}

\sf{LCM\: (306, 657)}

\\ \\

\boxed{\red{\sf \frac{= (306 × 657)}{HCF (306, 657)}}}

\\ \\

\boxed{\red{\sf \frac{= 201042}{9}}}

\mapsto\bf{= 22338}

\\ \\

\underline{\bf{Thus,}}

\\ \\

\textbf{LCM of 306 and 657 is 22338}

Thankyou :)

Similar questions