1.Using Heron's formula find the area of an equilateral triangle whose perimeter is 24 cm.
Answers
Answered by
14
Given,
Perimeter= 24 cm
∴ let the side of an equilateral triangle be x
We know that the perimeter of an equilateral triangle = 3 x side
∴ 24 = 3x
⇒x =8cm
=====================
Now,
Semi Perimeter=24/2
= 12cm
====================
Now ,
Using Herons Formula
√12(12-8)(12-8)(12-8)
= √12×4×4×4
= √2×2×2×2×2×2×2×2×3
= 2×2×2×2×✓3
= 16√3 cm²
===============
∴ The area of the equilatral triangle is 16√3 cm²
Perimeter= 24 cm
∴ let the side of an equilateral triangle be x
We know that the perimeter of an equilateral triangle = 3 x side
∴ 24 = 3x
⇒x =8cm
=====================
Now,
Semi Perimeter=24/2
= 12cm
====================
Now ,
Using Herons Formula
√12(12-8)(12-8)(12-8)
= √12×4×4×4
= √2×2×2×2×2×2×2×2×3
= 2×2×2×2×✓3
= 16√3 cm²
===============
∴ The area of the equilatral triangle is 16√3 cm²
Answered by
11
Hi !
Perimeter = 24 cm
Perimeter of an equilateral triangle = 3a , where a = side
3a = 24
a = 8 cm
Semi perimeter = S = 8+8+8/2 = 12
Heron's formula :-
√s(s-a)(s-b)(s-c)
a = b = c = 8 cm
= √12(12-8)(12-8)(12-8)
= √12×4×4×4
= 16√3 cm²
The area of the equilateral triangle is 16√3 cm²
Perimeter = 24 cm
Perimeter of an equilateral triangle = 3a , where a = side
3a = 24
a = 8 cm
Semi perimeter = S = 8+8+8/2 = 12
Heron's formula :-
√s(s-a)(s-b)(s-c)
a = b = c = 8 cm
= √12(12-8)(12-8)(12-8)
= √12×4×4×4
= 16√3 cm²
The area of the equilateral triangle is 16√3 cm²
Anonymous:
:)
Similar questions