Math, asked by piyush200444, 2 months ago

1
Using properties of determinant, find the value of​

Attachments:

Answers

Answered by Nereida
11

Answer :

\tt{\left|\begin{array}{ccc}1 & 1 & 1\\a & b & c\\b+c & c+a & a+b\end{array}\right|}

Applying : R3 = R3 + R2

\tt{=\left|\begin{array}{ccc}1 & 1 & 1\\a & b & c\\a+b+c & a+b+c & a+b+c\end{array}\right|}

Taking common : (a+b+c) from R3

\tt{=(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1\\a & b & c\\1 & 1 & 1\end{array}\right|}

If two columns or rows of a determinant are identical, then value of determinant is zero.

Hence,

\tt{=(a+b+c)0}

\tt{=0}

Answered by Mbappe007
2

Applying : R3 = R3 + R2

\begin{gathered}\tt{=\left|\begin{array}{ccc}1 & 1 & 1\\a & b & c\\a+b+c & a+b+c & a+b+c\end{array}\right|}\end{gathered}

Taking common : (a+b+c) from R3

\begin{gathered}\tt{=(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1\\a & b & c\\1 & 1 & 1\end{array}\right|}\end{gathered}

= (a+b+c)

If two columns or rows of a determinant are identical, then value of determinant is zero.

Hence,

</p><p>\tt{=(a+b+c)0}=(a+b+c)0

</p><p>\tt{=0}=0

Similar questions