Math, asked by Eutuxia, 2 months ago

(1) Verify that :
\sf (i) - \dfrac{1}{2} + \bigg [ \dfrac{-4}{3} +\dfrac{3}{7} \bigg] \: and \bigg [ \dfrac{-1}{2} + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right ) are \: the \: same
\sf (ii) \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )
(2) Find :
\sf \dfrac{5}{22} + \dfrac{3}{7} + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)
(3) Find :
\sf \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left ( \dfrac{-4}{7}\right ) \times \dfrac{15}{16}+ \left ( \dfrac{-6}{11} \right)[/tex]
(4) Find :
\sf \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left( \dfrac{-4}{7}\right) \times \dfrac{15}{16}
------------------------------------
↦ Spammed/Irrelevant Answers will be reported.
↦ Best Answer will be rewarded with Brainliest.
↦ Class - 8
↦ Lesson - Rational Numbers

Answers

Answered by 12thpáìn
124

1 Verify that :

\\\sf (i) - \dfrac{1}{2} + \bigg [ \dfrac{-4}{3} +\dfrac{3}{7} \bigg] \: and \bigg [ \dfrac{-1}{2} + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right ) are \: the \: same\\

Solution

\\\bf LHS=- \dfrac{1}{2} + \bigg [ \dfrac{-4}{3} +\dfrac{3}{7} \bigg] \:

 \bf{RHS= \bigg [ \dfrac{-1}{2} + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right )}

On Solving LHS we get,

\\\sf~~~~~:\implies  LHS= - \dfrac{1}{2} + \bigg [ \dfrac{-4}{3} +\dfrac{3}{7} \bigg] \:

\sf~~~~~:\implies  LHS= - \dfrac{1}{2} + \bigg [ \dfrac{-28 + 9}{21}  \bigg] \:

\sf~~~~~:\implies  LHS= - \dfrac{1}{2} + \ \dfrac{-19}{21}   \:

\sf~~~~~:\implies  LHS=  \dfrac{ - 21 - 38}{42}  \:

\sf~~~~~:\implies LHS=  \dfrac{ - 59 \: }{ \:  \: 42 \: }  \:

On Solving RHS we get

\sf{~~~~~:\implies RHS= \bigg [ \dfrac{-1}{2} + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right )}

\sf{~~~~~:\implies RHS= \bigg [ \dfrac{-7 + 6}{14}  \bigg] + \left ( \dfrac{-4}{3}\right )}

\sf{~~~~~:\implies RHS= \dfrac{-1}{14}  -  \dfrac{4}{3}}

\sf{~~~~~:\implies RHS= \dfrac{-3  -  56}{42}  }

\sf{~~~~~:\implies RHS= \dfrac{ - 59 \:  \: }{ \: 42}  }

\bf{LHS = RHS  \:  \: _{ \pink{Verified}}}\\\\

\\\pink{\sf (ii) \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )}\\

Solution

 \\\bf{LHS= \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \:}

 \bf{RHS= \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right ) }

On Solving LHS we will

 \sf{~~~~~:\implies LHS= \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \:}

\sf{~~~~~:\implies.LHS= \dfrac{2}{3} \times \bigg [ \dfrac{-30 + 28}{35}  \bigg] \:}

\sf{~~~~~:\implies LHS= \dfrac{2}{3} \times  \dfrac{-2}{35} \:}

\sf{~~~~~:\implies LHS= \dfrac{ - 4}{105}   \:}

On Solving RHS we get

 \sf{~~~~~:\implies RHS= \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right ) }

\sf{~~~~~:\implies RHS=  \dfrac{8}{15} \times   \dfrac{-6}{7} }

\sf{~~~~~:\implies RHS=  \dfrac{ - 48}{105}     }

 \sf{~~~~~:\implies RHS=  \dfrac{ - 16}{35}     }

~~~~~:\implies \bf{LHS ≠ RHS }\\\\

(2) Find :

\\\sf \dfrac{5}{22} + \dfrac{3}{7} + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)

Solution

~~~~~:\implies \sf \dfrac{5}{22} + \dfrac{3}{7} + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)

Taking LCM of 22,7,21,11 = 462

\sf ~~~~~:\implies \dfrac{105 + 198 - 176 - 252}{462}

\sf~~~~~:\implies  \dfrac{303 - 428}{462}

\sf ~~~~~:\implies \dfrac{ - 125 \:  \: }{462}

\sf  ~~~~~:\implies\dfrac{ - 125}{462} \:  \:  \:  \pink{\mathfrak{answer}}\\\\

3 Find:

\\\sf ~~~~~:\implies\left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left ( \dfrac{-4}{7}\right ) \times \dfrac{15}{16}+ \left ( \dfrac{-6}{11} \right)

\sf~~~~~:\implies  \dfrac{840}{5040} + \left ( \dfrac{-6}{11} \right)

\sf ~~~~~:\implies \dfrac{1}{6}  -  \dfrac{6}{11}

\sf ~~~~~:\implies \dfrac{11 - 36}{66}

\sf  ~~~~~:\implies \dfrac{ - 25}{66} \\\\

(4) Find :

\\\\\sf{ ~~~~~:\implies \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left( \dfrac{-4}{7}\right) \times \dfrac{15}{16}}

\sf ~~~~~:\implies \dfrac{840}{5040}

\sf~~~~~:\implies  \dfrac{1}{6}  \\  \\  \\

I Hope you Like My Answer

Happy Studying

Answered by hemanthvadapalli123
10

\huge\bold{1)Question:-}

(1) Verify that :

\sf (i) - \dfrac{1}{2} + \bigg [ \dfrac{-4}{3} +\dfrac{3}{7} \bigg] \: and \bigg [ \dfrac{-1}{2} + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right ) are \: the \: same

\sf (ii) \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )

\huge\bold{Solution:-}

Refer to the attachment 1 and 2

Verification

\huge\bold{2)Question:-}

(2) Find :

\sf \dfrac{5}{22} + \dfrac{3}{7} + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)

\huge\bold{Solution:-}

Refer to attachment-3

Final answer:-

 \frac{53}{231}

\huge\bold{3)Question:-}

(3) Find :

( \frac{ - 14}{11} ) \times  (\frac{3}{5} ) \times ( - \frac{4}{7} ) \times  \frac{15}{16}  + ( \frac{ - 6}{11} )

 + ( \frac{ - 6}{11} )

\huge\bold{Solution:-}

Refer to attachment- 4

Final answer:-

 \frac{-1}{22}

\huge\bold{4)Question:-}

(4)Find:

\sf \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left( \dfrac{-4}{7}\right) \times \dfrac{15}{16}

\huge\bold{Solution:-}

Refer to the attachment -5

Final answer:-

 \frac{1}{2}

Hope this is helpful \huge\bold{✓}

Attachments:
Similar questions