Math, asked by Eutuxia, 1 month ago

(1) Verify that :
\sf (i) - \dfrac{1}{2} + \bigg [ \dfrac{-4}{3} +\dfrac{3}{7} \bigg] \: and \bigg [ \dfrac{-1}{2} + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right ) are \: the \: same
_
\sf (ii) \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )
_
(2) Find :
\sf \dfrac{5}{22} + \dfrac{3}{7} + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)
_
(3) Find :
\sf \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left ( \dfrac{-4}{7}\right ) \times \dfrac{15}{16} + \left ( \dfrac{-6}{11} \right)
_
(4) Find :
\sf \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left( \dfrac{-4}{7}\right) \times \dfrac{15}{16}
------------------------------------
↦ Spammed/Irrelevant Answers will be reported.
↦ Best Answer will be rewarded with Brainliest.
↦ Class - 8
↦ Lesson - Rational Numbers

Answers

Answered by Anonymous
43

AnswErs :

(i) Verify that :

\sf (i) - \dfrac{1}{2} + \bigg [  \left(\dfrac{-4}{3}  \right)+\dfrac{3}{7} \bigg] \: and \bigg [  \left(\dfrac{-1}{2} \right) + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right ) are \: the \: same. \\

Equation for the given question,

{ \implies \sf - \dfrac{1}{2} + \bigg [  \left(\dfrac{-4}{3}  \right)+\dfrac{3}{7} \bigg] \:   = \bigg [  \left(\dfrac{-1}{2} \right) + \dfrac{3}{7} \bigg] + \left ( \dfrac{-4}{3}\right )} \\

{ \implies \sf - \dfrac{1}{2} + \bigg [  \dfrac{-4 \times 7 + 3 \times 3}{21}\bigg ] \:   = \bigg [ \dfrac{ - 1 \times 7 + 3 \times 2}{14} \bigg] + \left ( \dfrac{-4}{3}\right )} \\

Adding the fractions in the brackets,

{ \implies \sf - \dfrac{1}{2} + \bigg [  \dfrac{-28+ 9}{21}\bigg ] \:   = \bigg [ \dfrac{ - 7 + 6}{14} \bigg] + \left ( \dfrac{-4}{3}\right )} \\

Multiplying the numbers,

{ \implies \sf - \dfrac{1}{2} + \bigg [  \dfrac{-28+ 9}{21}\bigg ] \:   = \bigg [ \dfrac{ - 7 + 6}{14} \bigg] + \left ( \dfrac{-4}{3}\right )} \\

Reducing the numbers,

{ \implies \sf - \dfrac{1}{2} + \dfrac{-19}{21}\:   = \dfrac{ - 1}{14}+  \dfrac{-4}{3}} \\

Add the fractions in both LHS and RHS,

{ \implies \sf  \dfrac{ - 1}{ 2} + \dfrac{-19}{21}\:   = \dfrac{ - 1}{14}+  \dfrac{-4}{3}} \\

Multiplying numerators and denominators to get LCM in all denominators,

{ \implies \sf  \dfrac{ -  1 \times 21}{  2 \times 21}  -  \dfrac{19 \times 2}{21 \times 2}\:   = \dfrac{ - 1 \times 3}{14 \times 3} -   \dfrac{4 \times 14}{3 \times 14}} \\

Re-writing the equation using equivalent fractions,

{ \implies \sf  \dfrac{  - 21}{42}  -  \dfrac{ 38}{42}\:   = \dfrac{ - 3}{42}+  \dfrac{56}{42}} \\

Subtracting the fraction,

{ \implies \sf  \dfrac{  - 21 - 38}{42} \:   = \dfrac{ - 3 - 56}{42}} \\

Substituting the answers,

{ \implies \sf  \dfrac{  - 59}{42} \:   = \dfrac{ - 59}{42}}\\

LHS = RHS

LHS = RHSHence, Verified!

⠀━━━━━━━━━━━━━━━━━━━━━━━━

\sf (ii) \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )

{ \implies\sf \dfrac{2}{3} \times \bigg [ \dfrac{-6}{7} +\dfrac{4}{5} \bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )} \\

Adding the fractions which are in the brackets,

{ \implies\sf \dfrac{2}{3} \times \bigg [ \dfrac{-6 \times 5 + 4 \times 7}{35}\bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )} \\

Multiplying the numbers in the numerator,

{ \implies\sf \dfrac{2}{3} \times \bigg [ \dfrac{-30 + 28}{35}\bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )} \\

Reducing the numbers in both the sides,

{ \implies\sf \dfrac{2}{3} \times \bigg [ \dfrac{ - 2}{35}\bigg] \: = \bigg [ \dfrac{2}{3} \times \dfrac{4}{5} \bigg] \times \left ( \dfrac{-6}{7}\right )} \\

{ \implies\sf \dfrac{2}{3} \times \bigg [ \dfrac{ - 2}{35}\bigg] \: = \bigg [ \dfrac{8}{15} \bigg] \times \left ( \dfrac{-6}{7}\right )} \\

Multiplying the fractions in both sides,

{ \implies\sf \dfrac{2}{3} \times\dfrac{ - 2}{35}\: =  \dfrac{8}{15}  \times \dfrac{-6}{7}} \\

{ \implies\sf \dfrac{2 \times  - 2}{3 \times 35} \: =  \dfrac{8 \times  - 6}{15 \times 7}  } \\

{ \implies\sf \dfrac{ - 4}{105} \: =  \dfrac{ - 48}{105}  } \\

LHS ≠ RHS

Hence, This equation is false.

⠀━━━━━━━━━━━━━━━━━━━━━━━━

(2) Find :

\sf \dfrac{5}{22} + \dfrac{3}{7} + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)

 \implies \sf \dfrac{5}{22} + \dfrac{3}{7} + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)

Adding the fractions,

 \implies \sf \dfrac{5 \times7 + 3 \times 22 }{154}  + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)

Multiplying the numbers in the numerator,

{\implies \sf \dfrac{35+66 }{154}  + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)} \\

Adding the numbers in the numerator,

{\implies \sf \dfrac{101}{154}  + \left ( \dfrac{-8}{21}\right ) + \left ( \dfrac{-6}{11} \right)} \\

{\implies \sf \left ( \dfrac{-8 \times 22 + 101 \times 3}{462}\right ) + \left ( \dfrac{-6}{11} \right)} \\

Multiplying the numbers in the numerator,

{\implies \sf \left ( \dfrac{-176 + 303}{462}\right ) + \left ( \dfrac{-6}{11} \right)} \\

Adding the numbers in the numerator,

{\implies \sf \left ( \dfrac{127}{462}\right ) + \left ( \dfrac{-6}{11} \right)} \\

Adding the fractions,

{\implies \sf \left ( \dfrac{127 \times 1 + ( - 6) \times 42}{462}\right )} \\

{\implies \sf \left ( \dfrac{127+  - 252}{462}\right )} \\

{\implies \sf \left ( \dfrac{ - 125}{462}\right )} \\

⠀━━━━━━━━━━━━━━━━━━━━━━━━

Answered by HelperToAll
31

Answer- Continuity of @prashansa2008's answer-

(3) Find :

\sf \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left ( \dfrac{-4}{7}\right ) \times \dfrac{15}{16}+ \left ( \dfrac{-6}{11} \right) \\

Multiplying the fractions,

 {\implies \sf \left ( \dfrac{-42}{45}\right )  \times \left ( \dfrac{-4}{7}\right ) \times \dfrac{15}{16}+ \left ( \dfrac{-6}{11} \right)} \\

{\implies \sf \left ( \dfrac{672}{315}\right )  \times \dfrac{15}{16}+ \left ( \dfrac{-6}{11} \right)} \\

{\implies \sf \left ( \dfrac{10080}{5040}\right ) + \left ( \dfrac{-6}{11} \right)} \\

Adding the fractions,

{\implies \sf \left ( \dfrac{10080 \times 11 + ( - 6) \times 5040}{55440}\right ) } \\

Multiplying the fractions in the numerator,

{\implies \sf \left ( \dfrac{110880 + ( -30240)}{55440}\right ) } \\

Adding the numbers in the numerator,{\implies \sf \left ( \dfrac{ - 30240}{55440}\right ) } \\

⠀━━━━━━━━━━━━━━━━━━━━━━━━

(4) Find :

\sf \left ( \dfrac{-14}{9}\right ) \times \dfrac{3}{5} \times \left( \dfrac{-4}{7}\right) \times \dfrac{15}{16} \\

Multiplying first two fractions,

{ \implies \sf \left ( \dfrac{-45}{42}\right ) \times \left( \dfrac{-4}{7}\right) \times \dfrac{15}{16}} \\

Multiplying first two fractions again,

{ \implies \sf \left ( \dfrac{180}{294}\right ) \times \dfrac{15}{16}} \\

Multiplying the two fractions,

{ \implies \sf \left ( \dfrac{2700}{4704}\right ) } \\

Similar questions
Math, 8 months ago