Math, asked by pranjaljogdand65, 8 days ago


(1) Volume of the cone is 6280 cm and its base radius is 20 cm. Find its perpendicular height.

Answers

Answered by AestheticSoul
4

Required Answer :

The perpendicular height of the cone = 14.98 cm

Given :

• Volume of cone = 6280 cm³

• Base radius of the cone = 20 cm

To find :

• Perpendicular height of the cone

Solution :

Formula of volume of cone :

Volume of cone = ⅓ πr²h

Where,

• Take π = 22/7

• r denotes the radius

• h denotes the height

We have,

• r = 20 cm

• volume = 6280 cm³

Substituting the given values :

→ 6280 = 1/3 × 22/7 × (20)² × h

→ 6280 = 1/3 × 22/7 × 20 × 20 × h

→ 6280 = 8800/21 × h

→ 6280 × 21/8800 = h

→ 628 × 21/880 = h

→ 314 × 21/440 = h

→ 157 × 21/220 = h

→ 3297/220 = h

→ 14.98 = h

Therefore, the perpendicular height of the cone = 14.98 cm

Figure :

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{r = 20~cm}}\put(9.5,10){\sf{h = 14.98~cm}}\end{picture}

Similar questions