Math, asked by sreekarreddy91, 2 months ago

1. What is the additive inverse of 
\sf\frac{5}{13}


2. Write the multiplicative inverse of 
\sf\frac{-2}{3}


3. Which number has no reciprocal?

4. Find the value :-

\sf \:(i) \: \frac{2}{5} \:+ \: \frac{3}{4}

\sf (ii) \: \frac{-2}{7} \: + \: \frac{4}{3}


\sf (iii) \: \frac{4}{3} \:-\: \frac{2}{3} \: + \: \frac{3}{11}

Answers

Answered by Zackary
18

Answer:

What is the additive inverse of  \sf\frac{5}{13}

= \sf\frac{5}{13} + ( \sf\frac{-5}{13} ) = 0

so \sf\frac{-5}{13} is the additive inverse of \sf\frac{5}{13}

2. Write the multiplicative inverse of  \sf\frac{-2}{3}

\sf\frac{-2}{3} × \sf\frac{-3}{2}

= \sf\frac{-1~ × ~-1 }{1~×~1}

= 1

so, \sf\frac{-3}{2} is Write the multiplicative inverse of  \sf\frac{-2}{3}

3. Which number has no reciprocal?

  \bold{Zero~dont~have~reciprocal}

4. Find the value :-

\sf \:(i) \: \frac{2}{5} \:+ \: \frac{3}{4}

 \sf \:  \frac{2}{5}  +  \frac{3}{4}  \\\sf \color{teal}{take \: lcm \: of \: denominator \: 5 \: and \: 4}  \\  =   \sf\frac {(2 \times 4) + (3 \times 5)}{20}  \\  =  \sf \frac{23}{20}

\sf (ii) \: \frac{-2}{7} \: + \: \frac{4}{3}

 \sf \frac{ - 2}{7}  +  \frac{4}{3}  \\  \sf \color{teal}{take \: lcm \: of \: denominators \: 3 \: and \: 7}\\   \sf = \frac{ (- 2 \times 3) + (4 \times 7)}{21}  \\  =  \frac{22}{21}

\sf (iii) \: \frac{4}{3} \:-\: \frac{2}{3} \: + \: \frac{3}{11}

 \sf \frac{4}{3}  -  \frac{2}{3}  +  \frac{3}{11}  \\  \sf \color{teal}{take \: lcm \: of \: denominators \: 3 \: and \: 11} \\  =  \sf\frac{(4 \times 11 )+ (2 \times 11) +( 3 \times 3)}{33}  \\  =   \sf \: \frac{75}{11}

Answered by mathdude500
8

\large\underline{\bold{Question - 1}}

 \sf \:What \:  is  \: the \:  additive \:  inverse \:  of  \: \dfrac{5}{13}

\large\underline{\bold{Solution-}}

Basic Concept :- An additive inverse of a number is defined as the value, which on adding with the given number results in zero value. It is the value we add to a number to give resultant zero.

Let, a is any real number, then its additive inverse will be - a so that, a + (-a) = a – a = 0.

 \sf \: Hence \: additive \:  inverse \:  of  \: \dfrac{5}{13}  =  \bf \:  -  \: \dfrac{5}{13}

\large\underline{\bold{Question - 2}}

 \sf \: Write  \: the  \: multiplicative \:  inverse \:  of \:  -  \: \dfrac{2}{3}

\large\underline{\bold{Solution-}}

Basic concept :- The multiplicative inverse of a number x (should be non - zero) is given by 1/x, such that when it is multiplied by given number, it results in value equal to 1. It is also called Reciprocal of a given real number.

If p/q is a fraction, then the multiplicative inverse of p/q should be such that, when it is multiplied to the fraction, then the result should be 1. Hence, q/p is the multiplicative inverse of fraction p/q.

 \sf \: Hence \:multiplicative  \: inverse \:  of \:  - \:  \dfrac{2}{3}  =  \bf \:  -  \: \dfrac{3}{2}

\large\underline{\bold{Question - 3}}

 \sf \: Which  \: number \:  has \:  no \:  reciprocal?

\large\underline{\bold{Solution-}}

 \bf \: 0 \:  \sf \: has \: no \: reciprocal \: as \: \dfrac{1}{0}  \: is \: not \: defined.

\large\underline{\bold{Question - 4}}

 \bf \: Find  \: the \:  value \: of \:

 \bf \: (i) \:  \sf \: \dfrac{2}{5}  + \dfrac{3}{4}

Firstly, We have to find the LCM of 5 and 4

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:4\:, \: 5 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:2\:, \: 5 \:\:}} \\\underline{\sf{5}}&\underline{\sf{\:\:1\:, \: 5 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1\:, \: 1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

So, LCM of 5 and 4 is 20

As we know that,

To find the operation of additions or subtraction in rational numbers, we will divide the LCM by denominator and then we will multiply the outcome with numerator.

So,

  =  \: \sf \: \dfrac{2 \times 4 + 3 \times 5}{20}

 =  \:  \sf \: \dfrac{8 + 15}{20}

 =   \: \sf \: \dfrac{23}{20}

 \bf \: (ii) \:  \sf \:  -  \: \dfrac{2}{7}  + \dfrac{4}{3}

Firstly, We have to find the LCM of 7 and 3

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:7\:, \: 3 \:\:}}}\\ {\underline{\sf{7}}}& \underline{\sf{\:\:7\:, \: 1 \:\:}} \\{\sf{}}&\underline{\sf{\:\:1\:, \: 1 \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

So, LCM of 3 and 7 is 21

As we know that,

To find the operations of addition or subtraction of rational numbers, we will divide the LCM by enominator and then we will multiply the outcome with numerator.

So,

 =  \:  \sf \: \dfrac{ - 2 \times 3 + 4 \times 7}{21}

 =   \: \sf \:  \dfrac{ - 6 + 28}{21}

 =  \:  \sf \: \dfrac{22}{21}

 \bf \: (iii) \:  \sf \: \dfrac{4}{3} \:-\: \dfrac{2}{3} \: + \: \dfrac{3}{11}

Firstly, We have to find the LCM of 3 and 11.

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:11\:, \: 3 \:\:}}}\\ {\underline{\sf{11}}}& \underline{\sf{\:\:11\:, \: 1 \:\:}} \\{\sf{}}&\underline{\sf{\:\:1\:, \: 1 \:\:}}\end{array}\end{gathered}\end{gathered}\end{gathered}

So, LCM of 11 and 3 is 33.

As we know that,

To find the operations of addition or subtraction of rational numbers, we will divide the LCM by enominator and then we will multiply the outcome with numerator.

 =  \:  \sf \: \dfrac{4 \times 11 - 2 \times 11 + 3 \times 3}{33}

 =  \:  \sf \: \dfrac{44 - 22 + 9}{33}

 =  \:  \sf \: \dfrac{22 + 9}{33}

 =  \:  \sf \: \dfrac{31}{33}

Note :-

Additive Inverse and Additive Identity both are different.

  • Additive inverse is the number which ia added to the given number to get the result as zero.

  • Additive identity is the value that is added to number to get the original number. Additive identity is always 0.

Similar questions