Math, asked by rfvjibb, 1 year ago

1. What is the solution of the equations 2x - 3y = 7 and
4x - y = 20?
(1)​

Answers

Answered by AbhijithPrakash
1

Answer:

2x-3y=7,\:4x-y=20\quad :\quad y=\dfrac{6}{5},\:x=\dfrac{53}{10}

Step-by-step explanation:

\begin{bmatrix}2x-3y=7\\ 4x-y=20\end{bmatrix}

\mathrm{Isolate}\:x\:\mathrm{for}\:2x-3y=7

2x-3y=7

\gray{\mathrm{Add\:}3y\mathrm{\:to\:both\:sides}}

2x-3y+3y=7+3y

\gray{\mathrm{Simplify}}

2x=7+3y

\gray{\mathrm{Divide\:both\:sides\:by\:}2}

\dfrac{2x}{2}=\dfrac{7}{2}+\dfrac{3y}{2}

\gray{\mathrm{Simplify}}

x=\dfrac{7+3y}{2}

\gray{\mathrm{Subsititute\:}x=\dfrac{7+3y}{2}}

\begin{bmatrix}4\cdot \dfrac{7+3y}{2}-y=20\end{bmatrix}

\mathrm{Isolate}\:y\:\mathrm{for}\:4\cdot\dfrac{7+3y}{2}-y=20

4\cdot \dfrac{7+3y}{2}-y=20

\gray{4\cdot \dfrac{7+3y}{2}=2\left(3y+7\right)}

2\left(3y+7\right)-y=20

\gray{\mathrm{Expand\:}2\left(3y+7\right)-y:\quad 5y+14}

5y+14=20

\gray{\mathrm{Subtract\:}14\mathrm{\:from\:both\:sides}}

5y+14-14=20-14

\gray{\mathrm{Simplify}}

5y=6

\gray{\mathrm{Divide\:both\:sides\:by\:}5}

\dfrac{5y}{5}=\dfrac{6}{5}

\gray{\mathrm{Simplify}}

y=\dfrac{6}{5}

\gray{\mathrm{For\:}x=\dfrac{7+3y}{2}}

\gray{\mathrm{Subsititute\:}y=\dfrac{6}{5}}

x=\dfrac{7+3\cdot \dfrac{6}{5}}{2}

\gray{\dfrac{7+3\cdot \dfrac{6}{5}}{2}}

=\dfrac{7+\dfrac{18}{5}}{2}

=\dfrac{\dfrac{53}{5}}{2}

\gray{\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{\dfrac{b}{c}}{a}=\dfrac{b}{c\:\cdot \:a}}

=\dfrac{53}{5\cdot \:2}

\gray{\mathrm{Multiply\:the\:numbers:}\:5\cdot \:2=10}

=\dfrac{53}{10}

x=\dfrac{53}{10}

\gray{\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}}

y=\dfrac{6}{5},\:x=\dfrac{53}{10}

Attachments:
Similar questions