1. What would happen if you first extracted the ether solution of the mixture of an organic acid and
base with aqueous NaOH solution instead of aqueous HCl? Would this make any difference in the
overall results? Explain.
Answers
Explanation:
After a reaction is completed, the solution often times does not only contain the desired product, but also undesired byproducts of the reaction, unreacted starting material(s) and the catalyst (if it was used). These compounds have to be removed in the process of isolating the pure product. A standard method used for this task is an extraction or often also referred to as washing. Strictly speaking, the two operations are targeting different parts in the mixture: while the extraction removes the target compound from an impure matrix, the washing removes impurities from the target compound i.e., water by extraction with saturated sodium chloride solution. Washing is also used as a step in the recrystallization procedure to remove the impurity containing mother liquor adhering to the crystal surface.
Many liquid-liquid extractions are based on acid-base chemistry. The liquids involved have to be immiscible in order to form two layers upon contact. Since most of the extractions are performed using aqueous solutions (i.e., 5 % NaOH, 5 % HCl), the miscibility of the solvent with water is a crucial point as well as the compatibility of the reagent with the compounds and the solvent of the solution to be extracted. Solvents like dichloromethane (=methylene chloride in older literature), chloroform, diethyl ether, or ethyl ester will form two layers in contact with aqueous solutions if they are used in sufficient quantities. Ethanol, methanol, tetrahydrofuran (THF) and acetone are usually not suitable for extraction because they are completely miscible with most