Math, asked by Mushtfamzp, 5 months ago

1. Write the coefficient of x²
1. 4x²+7x+5
2. 2x³-3x²+5x-2

2. Write the degree.
1. 5x³+2x²-3x-1
2. 4x²+2x+3

3. Find the Value of:
5x-4x²+3 at
1. x=0
2. x=-1
3. x=-2
4. x=3

4. Find the zero of the following polynomials.
1. P(x)=x+5
2. P(x)=x-5

5. Factories:
1. 12x²-7x+1
2. 3x²-x-4
Solve the questions in step by step solution.​

Answers

Answered by MARK0007
3

Answer:

1.4

2.-3

3.3

4.2

mark me as brainliest

mark me as brainliest

mark me as brainliest

mark me as brainliest


MARK0007: thats the ans from 1st q
Answered by ItzIshan
23

QuestioN - 1 :-

Write the coefficient of :-

  • 4x² + 7x + 5

⠀⠀

  • 2x³ - 3x² + 5x - 2

⠀⠀

AnsweR :-

⠀⠀

1) 4x² + 7x + 5

⠀⠀

  • The coefficient of is 4.

⠀⠀

2) 2x³ - 3x² + 5x - 2

⠀⠀

  • The coefficient of is (-3).

⠀⠀

QuestioN - 2 :-

⠀⠀

Write the Degree :-

⠀⠀

  • 5x³ + 2x² -3x -1

⠀⠀

  • 4x² + 2x +3

⠀⠀

AnsweR :-

⠀⠀

1) 5x³ + 2x² - 3x -1

⠀⠀

  • The degree of this polynomial is 3.

⠀⠀

2) 4x² + 2x + 3

⠀⠀

  • The degree of this polynomial is 2.

⠀⠀

QuestioN - 3 :-

⠀⠀

Find the value of 5x - 4x² + 3 at ,

  • x = 0

  • x = -1

  • x = -2

  • x = 3

⠀⠀

The value of 5x - 4x² + 3 at x = 0

⠀⠀

 \sf \: 5x - 4 {x}^{2}  + 3 \\  \\  \implies \:  \sf \: 5 \times 0 - 4 \times  {0}^{2}  + 3 \\  \\  \implies \sf \: 0 - 0 + 3 \\  \\  \implies \sf \: 3

⠀⠀

The value of 5x - 4x² + 3 at x = -1

⠀⠀

 \sf \: 5x - 4 {x}^{2}  + 3 \\  \\  \implies \sf \: 5 \times ( - 1) - 4 \times  {( - 1)}^{2}  + 3 \\  \\  \implies \sf \:  - 5 - 4 \times 1 + 3 \\  \\  \implies \sf \:  - 5 - 4 + 3 \\  \\  \implies \sf \:  - 9 + 3 \\  \\  \implies \sf \:  - 5

⠀⠀

The value of 5x - 4x² + 3 at x = -2

⠀⠀

 \sf5x - 4 {x}^{2}  + 3 \\  \\  \implies \sf \: 5 \times ( - 2) - 4 {( - 2)}^{2}  + 3 \\  \\  \implies \sf \:  - 10 - 4 \times 4 + 3 \\  \\  \implies \sf \:  - 10 - 16 + 3 \\  \\  \implies \sf \:  - 26 + 3 \\  \\  \implies \sf \:  - 23

⠀⠀

The value of 5x - 4x² + 3 at x = 3

⠀⠀

 \sf5x - 4 {x}^{2}  + 3 \\  \\  \implies \sf \: 5 \times 3 - 4 \times  {3}^{2}   + 3 \\  \\  \implies \sf \: 15 - 4 \times 9 + 3 \\  \\  \implies \sf \: 15 - 36 + 3 \\  \\  \implies \sf \: 18 - 36 \\  \\  \implies \sf \:  - 18

⠀⠀

QuestioN - 4 :-

⠀⠀

Find the zeros of the following polynomials :-

⠀⠀

  • p(x) = x + 5

  • p(x) = x - 5

⠀⠀

AnsweR :-

⠀⠀

1) p(x) = x + 5

⠀⠀

To find the zeros of polynomial equate the polynomial to zero ,

⠀⠀

 \sf \: p(x) = 0 \\  \\  \implies \sf \: x + 5 = 0 \\  \\  \implies \sf \: x =  - 5

2) p(x) = x - 5

⠀⠀

 \sf \: p(x) = 0 \\  \\  \implies \sf \: x - 5 = 0 \\  \\  \implies \sf \: x = 5

QuestioN - 5 :-

⠀⠀

Factories ths following

⠀⠀

  • 12x² - 7x + 1

  • 3x² -x - 4

AnsweR :-

⠀⠀

1) 12x² - 7x + 1

⠀⠀

 \sf \implies \: 12 {x}^{2}  - 7x + 1 \\  \\  \implies \sf \: 12 {x}^{2}  - 4x -  3x + 1 \\  \\  \implies \sf \: 4x(3x - 1) - 1(3x - 1) \\  \\  \implies \sf \: (4x - 1)(3x - 1)

⠀⠀

2) 3x² - x - 4

⠀⠀

 \implies \sf \: 3 {x}^{2}  - x - 4 \\  \\ \implies \sf \: 3 {x}^{2}   + 3x  -  4x - 4 \\  \\ \implies \sf3x(x + 1) - 4(x + 1) \\  \\  \implies \sf(3x - 4)(x + 1)

_________________________

Hope it will help you :)

Similar questions