Math, asked by prithapaul35, 2 months ago

1/(x-1)-1 ≥ 2-1/(x-2). then solve x​

Answers

Answered by vyaswanth
0

Step-by-step explanation:

GIVEN:-

 \frac{1}{x - 1} - 1  \geqslant 2 -  \frac{1}{ x - 2}

MAKE SURE THAT IT MUST BE GREATER THAN OR EQUAL TO 0

 \frac{1}{x - 1} - 1  -  2  +   \frac{1}{ x - 2}  \geqslant 0

SOLVING IT WE GET AS FOLLOWS

 \frac{1}{x - 1}  +  \frac{1}{x - 2} - 3 \geqslant 0

 \frac{x - 2}{(x - 1)(x - 2)}  +  \frac{x - 1}{(x - 2)(x - 1)} -  \frac{3(x - 2)(x - 1)}{(x - 2)(x - 1)}  \geqslant 0

 \frac{x - 2 + x - 1  -  3(x - 1)(x - 2)}{(x - 1)( x - 2)}  \geqslant 0

 \frac{2x - 3 - 3(x ^{2} - 3x + 2) }{ {x}^{2} - 3x + 2 }  \geqslant 0

 \frac{2x - 3 - 3 {x}^{2} + 9x - 2 }{ {x}^{2}  - 3x + 2}  \geqslant 0

Taking minus common from numerator the sign reverses and denominator comes to numerator

(3 {x}^{2}  - 11x +9)(x - 1)(x - 2) \leqslant 0

so x belongs to [1,2]

Similar questions