Math, asked by LISHAN562, 8 months ago

1/(x-1)-1/(x+5)=6/7 solve by completing the square

Answers

Answered by shadowsabers03
5

Given,

\longrightarrow\dfrac{1}{x-1}-\dfrac{1}{x+5}=\dfrac{6}{7}

Making LHS a unique fraction,

\longrightarrow\dfrac{(x+5)-(x-1)}{(x-1)(x+5)}=\dfrac{6}{7}

\longrightarrow\dfrac{x+5-x+1}{(x-1)(x+5)}=\dfrac{6}{7}

\longrightarrow\dfrac{6}{(x-1)(x+5)}=\dfrac{6}{7}

Dividing by 6,

\longrightarrow\dfrac{1}{(x-1)(x+5)}=\dfrac{1}{7}

Taking the reciprocal,

\longrightarrow (x-1)(x+5)=7

\longrightarrow x^2+4x-5=7

\longrightarrow x^2+4x=5+7

\longrightarrow x^2+4x=12

Adding \left(\dfrac{4}{2}\right)^2=4 to both sides,

\longrightarrow x^2+4x+4=12+4

\longrightarrow x^2+2\times x\times2+2^2=16

\longrightarrow (x+2)^2=4^2

\longrightarrow x+2=\pm4

\longrightarrow x=\pm4-2

\longrightarrow x=4-2\quad OR\quad x=-4-2

\longrightarrow \underline{\underline{x=2}}\quad OR\quad\underline{\underline{x=-6}}

Similar questions