1 ÷ x+1÷y= 4,2÷x+3÷y=7 find by substitution or elimination method
Answers
Answer:-
x = 1/5
y = -1
Explanation:-
Given:
To Find:
Values of x and y
Solution:
Substitution Method
From eq. (1)
Put eq.(3) in (2)
Put y = -1 in eq (3)
Elimination Method
(2) - 3 × (1)
Put x value in eq(1)
Answer :-
- x = 1/5
- y = - 1
Explanation :-
Given
Pair of Linear equations
(1/x) + (1/y) = 4--eq(1)
(2/x) + (3/y) = 7--eq(2)
I. Substitution method :
Finding the value of x in terms of y from eq(1)
⇒ (1/x) + (1/y) = 4
⇒ 1/x = 4 - (1/y)
⇒ 1/x = (4y - 1)/y
⇒ x = y/(4y - 1)
Substitute x = y/(4y - 1) in eq(2)
⇒ (2/x) + (3/y) = 7
⇒ 2/{y/(4y - 1)} + (3/y) = 7
⇒ 2(4y - 1)/y + (3/y) = 7
⇒ (8y - 2)/y + (3/y) = 7
⇒ (8y - 2 + 3)/y = 7
⇒ (8y + 1)/y = 7
⇒ (8y/y) + (1/y) = 7
⇒ 8 + (1/y) = 7
⇒ 1/y = 7 - 8
⇒ 1/y = - 1
⇒ y = - 1
Substitute y = - 1 in x = y/(4y - 1)
⇒ x = y/(4y - 1)
⇒ x = - 1/{4(-1) - 1}
⇒ x = - 1/(-4 - 1)
⇒ x = - 1/-5
⇒ x = 1/5
II. Elimination method :
To eliminate first we need to make any one one coefficients equal
Multiply eq(1) by 2
⇒ (2/x) + (2/y) = 8 --eq(3)
Subtracting eq(1) from eq(3)
⇒ (2/x) + (2/y) - { (2/x) + (3/y) } = 8 - 7
⇒ (2/x) + (2/y) - (2/x) - (3/y) = 1
⇒ (2/y) - (3/y) = 1
⇒ (2 - 3)/y = 1
⇒ - 1/y = 1
⇒ 1/y = - 1
⇒ y = - 1
Substitute y = - 1 in eq(1)
⇒ (1/x) + (1/y) = 4
⇒ (1/x) + (1/-1) = 4
⇒ (1/x) + (-1) = 4
⇒ (1/x) - 1 = 4
⇒ 1/x = 4 + 1
⇒ 1/x = 5
⇒ 1/x = 5
⇒ x = 1/5
∴ x = 1/5 and y = -1.