Math, asked by moulikabaskar89, 3 months ago

(1+x^2)dy/dx+y=e^tan^-1x answer

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

The given Differential Equation is

\rm :\longmapsto\:(1+{x}^{2})\dfrac{dy}{dx} + y =  {e}^{ {tan}^{ - 1} x}

can be rewritten as

\rm :\longmapsto\:\dfrac{dy}{dx} +\dfrac{y}{1 +  {x}^{2} } =  \dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} }

which is a Linear Differential equation.

So,

On comparing with,

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q

we get,

 \red{\rm :\longmapsto\:p = \dfrac{1}{1 +  {x}^{2} } } \\  \red{\rm :\longmapsto\:q = \dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} }}

Integrating Factor, I.F. is given by

\rm :\longmapsto\:I.F.  =  {e} \: ^{\displaystyle \int \: pdx}

\rm :\longmapsto\:I.F.  =  {e} \: ^{\displaystyle \int \: \dfrac{1}{1 +  {x}^{2} } dx}

\bf\implies \:I.F.  = {e}^{ {tan}^{ - 1} x}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \displaystyle \int \: \dfrac{dx}{1 +  {x}^{2} } =  {tan}^{ - 1} x + c \bigg \}}

Solution of Linear Differential equation is

\rm :\longmapsto\:y \times I.F.  = \displaystyle \int \:( q \times I.F. )dx

\rm :\longmapsto\:y \: {e}^{ {tan}^{ - 1} x} \:  = \displaystyle \int \sf \: {e}^{ {tan}^{ - 1} x} \times \dfrac{{e}^{ {tan}^{ - 1} x}}{1 +  {x}^{2} }dx

\rm :\longmapsto\:y \: {e}^{ {tan}^{ - 1} x} \:  = \displaystyle \int \sf \: \dfrac{{e}^{ {2tan}^{ - 1} x}}{1 +  {x}^{2} }dx

On right hand side of integral,

 \red{\rm :\longmapsto\:Put \:  {tan}^{ - 1}x = t} \\  \red{\rm :\longmapsto\:\dfrac{dt}{dx}  = \dfrac{1}{1 +  {x}^{2} }} \:  \:  \:  \:  \\  \red{\rm :\longmapsto\:\dfrac{dx}{1 +  {x}^{2} } = dt} \:  \:  \:  \:  \:  \:

On substituting all these values, we get

\rm :\longmapsto\:y \: {e}^{ {tan}^{ - 1} x} \:  = \displaystyle \int \sf \: {e}^{2t} dt

\rm :\longmapsto\:y \: {e}^{ {tan}^{ - 1} x} \:  = \dfrac{ {e}^{2t} }{2}  + c

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \displaystyle \int \:  {e}^{x}dx =  {e}^{x} + c\bigg \}}

\rm :\longmapsto\:y \: {e}^{ {tan}^{ - 1} x} \:  = \dfrac{ {e}^{ {2tan}^{ - 1} x} }{2}  + c

\bf :\longmapsto\:y \:  \:  = \dfrac{ {e}^{ {tan}^{ - 1} x} }{2}  + c{e}^{  - {tan}^{ - 1} x}

Similar questions