Math, asked by binayaksenapati2019, 8 months ago

1/(x-3)+1/(x-1)=5/x-1)-2(x-2),solve for x​

Answers

Answered by xSoyaibImtiazAhmedx
2

Step-by-step explanation:

 \frac{1}{x - 3}  +  \frac{1}{x - 1}  =  \frac{5}{x - 1}  - 2(x - 2)

 =  >  \frac{1}{x - 3}  + 2 =  \frac{4}{x - 1}   \\  =  >  \frac{1 + 2x - 6}{x - 3}  =  \frac{4}{x - 1}  \\  =  >  \frac{2x - 5}{x - 3}  =  \frac{4}{x - 1}  \\  =  > (2x - 5)(x - 1) = 4(x - 3) \\  =  > 2 {x}^{2}  - 2x - 5x + 5 = 4x - 12 \\  =  > 2 {x}^{2}  - 7x + 5 = 4x - 12 \\  =  > 2 {x}^{2}  - 11x + 17 = 0 \\  =  >   \frac{2 {x }^{2} - 11x + 17 }{2}  = 0 \\  =  >  {x}^{2}  -  \frac{11}{2} x +  \frac{17}{2}  = 0 \\  =  >  {x}^{2}  -  \frac{11}{2} x =  -  \frac{17}{2}  \\  =  >  {x}^{2}   - 2 \times x \times  \frac{11}{4}  +  ({ \frac{11}{4}) }^{2}  - ( { \frac{11}{4}) }^{2}  =  -  \frac{17}{2} \\  =  > ( {x -  \frac{11}{4} })^{2}  =  \frac{121}{16}  -  \frac{17}{2}  \\  =  > { (x -  \frac{11}{4}) }^{2}  =  \frac{121 - 136}{16}  \\  =  >  {(x -  \frac{11}{4} })^{2}  =  \frac{ - 15}{16}   \\  =  > x -  \frac{11}{4}  =  \frac{ \sqrt{ - 15} }{4}  \\  =  > x =  \frac{11}{4}  +  \frac{ \sqrt{ - 15} }{4}  \\  =  \frac{11}{4 }  + i \frac{ \sqrt{15} }{4}

so here's your answer ....

please make it brainliest ❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️❤️

Similar questions