Math, asked by hridayghelani9176, 11 months ago

1+x=√3(1-x) then what is x value

Answers

Answered by Anonymous
0

Step-by-step explanation:

1+x = √3(1-x)

1+x²+2x = 3(1+x²-2x)

1+x²+2x = 3+3x²-6x

2x² - 8x + 2 = 0

x² - 4x + 1 = 0

x = 4 + √16-4 / 2

x = 4 + √12 / 2

x = 4 + 2√3 / 2

x = 2 + √3

Answered by mysticd
0

Answer:

 \red { Value \: of \: x } \green {= 2-\sqrt{3}}

Step-by-step explanation:

 Given \:1 + x = \sqrt{3} ( 1-x)

 \implies 1 + x = \sqrt{3} - \sqrt{3}x

 \impliee x + \sqrt{3}x = \sqrt{3} - 1

 \implies x( 1 + \sqrt{3} ) = \sqrt{3} - 1

 \implies x = \frac{(\sqrt{3} - 1 )}{(\sqrt{3}+1)}

 = \frac{(\sqrt{3} - 1 )(\sqrt{3} - 1)}{(\sqrt{3}+1)(\sqrt{3} - 1)}

 = \frac{(\sqrt{3} - 1)^{2}}{(\sqrt{3})^{2} - 1 }

 = \frac{ (\sqrt{3})^{2} + 1^{2} - 2\sqrt{3}\times 1}{(\sqrt{3})^{2} - 1^{2}}

 = \frac{3+1-2\sqrt{3} }{3-1}

 = \frac{4 - 2\sqrt{3}}{2}\\=  \frac{2(2-\sqrt{3})}{2}

 = 2-\sqrt{3}

Therefore.,

 \red { Value \: of \: x } \green {= 2-\sqrt{3}}

•••♪

Similar questions
Math, 1 year ago