Math, asked by silentkumareswar, 4 months ago

(1+x^3)dy/dx+6x^2y=e^x​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

(1 +  {x}^{3} ) \frac{dy}{dx}  + 6 {x}^{2} y =  {e}^{x}  \\

 \implies \frac{dy}{dx}  +  \frac{6 {x}^{2} }{ {x}^{3} + 1 }. y =  \frac{ { e }^{x} }{ {x}^{3} + 1 }  \\

Now,

I.F.= {e}^{2 \int \frac{3 {x}^{2} }{ {x}^{3} + 1 } dx} =  {e}^{2 ln( {x}^{3}  + 1) }  = ( {x}^{3} + 1)^{2}    \\

 \implies \: y( {x}^{3}  + 1)^{2}  =  \int \frac{ {e}^{x} }{ {x}^{3}  + 1} .( {x}^{3}  + 1)^{2} dx \\

 \implies \: y( {x}^{3}  + 1)^{2}  =  \int  {e}^{x} ( {x}^{3}  + 1)dx \\

 \implies \: y( {x}^{3}  + 1)^{2}  =  {e}^{x}( {x}^{3}  + 1) -   {e}^{x} (3 {x}^{2} ) -  {e}^{x}.(6x) -  {e}^{x}  (6) + c \\

 \implies \: y( {x}^{3}  + 1)^{2}  = {e}^{x} ( {x}^{3}    - 3 {x}^{2} - 6x - 5) + c \\

Similar questions