Math, asked by janhavidivekar04, 2 months ago

(1+x)/(3+x)(2+3x) dx​

Answers

Answered by amansharma264
8

EXPLANATION.

∫(1 + x)/(3 + x)(2 + 3x)dx.

As we know that,

Partial fraction is applied only when coefficient of denominator > coefficient of numerator.

⇒ (1 + x)/(3 + x)(2 + 3x) = A/(3 + x) + B/(2 + 3x).

⇒ 1 + x = A(2 + 3x) + B(3 + x).

Put the value of x = -3 in equation, we get.

⇒ 1 + (-3) = A(2 + 3(-3)) + B(3 + (-3)).

⇒ 1 - 3 = A(2 - 9) + 0.

⇒ -2 = A(-7).

⇒ 2 = 7A.

⇒ A = 2/7.

Put the value of x = -2/3 in equation, we get.

⇒ 1 + (-2/3) = A[(2 + 3(-2/3)] + B(3 + (-2/3)].

⇒ 1 - 2/3 = 0 + B(3 - 2/3).

⇒ 3 - 2/3 = B(9 - 2/3).

⇒ 1/3 = B(7/3).

⇒ 1 = 7B.

⇒ B = 1/7.

Put the values in the equation, we get.

⇒ ∫(1 + x)/(3 + x)(2 + 3x)dx = ∫A/(3 + x)dx + ∫B/(2 + 3x)dx.

⇒ ∫2/7/(3 + x)dx + ∫1/7/(2 + 3x)dx.

⇒ ∫2/7(3 + x)dx + ∫dx/7(2 + 3x).

⇒ 2/7 ∫dx/(3 + x) + 1/7 ∫dx/(2 + 3x).

⇒ 2/7㏑(3 + x) + 1/7㏑(2 + 3x) + c.

                                                                                                                     

MORE INFORMATION.

Integration of irrational functions.

(1) = If integral is in the form of = ∫dx/√ax² + bx + c, ∫√ax² + bx + c dx.

Then we integrate it by expressing ax² + bx + c = (x + α)² + β.

(2) = If the integrals of the form ∫px + q/√ax² + bx + c dx, ∫(px + q)√ax² + bx + c dx. first we express px + q in the form px + q = A[d(ax² + bx + c/dx] + B and then proceed as usual with standard form.

Similar questions