Math, asked by prachimeshram12345, 2 months ago

1/x^+3x+2 resolve into partial fraction​

Answers

Answered by amansharma264
6

EXPLANATION.

⇒ ∫dx/x² + 3x + 2.

As we know that,

First we factorizes the denominator, we get.

Factorizes the equation into middle term split, we get.

⇒ x² + 3x + 2.

⇒ x² + 2x + x + 2.

⇒ x(x + 2) + 1(x + 2).

⇒ (x + 1)(x + 2).

Put this value in equation, we get.

⇒ ∫dx/(x + 1)(x + 2). = A/(x + 1) + B/(x + 2).

Taking L.C.M on both sides, we get.

⇒ 1 = A(x + 2) + B(x + 1).

Put the value of x = -2 in equation, we get.

⇒ 1 = A(-2 + 2) + B(-2 + 1).

⇒ 1 = 0 + B(-1).

⇒ B = -1.

Put the value of x = -1 in equation, we get.

⇒ 1 = A(-1 + 2) + B(-1 + 1).

⇒ 1 = A(1) + 0.

⇒ A = 1.

Put the value of A = 1 & B = -1 in equation, we get.

⇒ ∫A/(x + 1) + ∫B/(x + 2).

⇒ ∫1.dx/(x + 1) + ∫(-1).dx/(x + 2).

⇒ ㏑(x + 1) - ㏑(x + 2) + c.

                                                                                                                       

MORE INFORMATION.

Standard integrals.

(1) = ∫0.dx = c.

(2) = ∫1.dx = x + c.

(3) = ∫k dx = kx + c, (k∈R).

(4) = ∫xⁿdx = xⁿ⁺¹/n + 1 + c, (n ≠ -1).

(5) = ∫dx/x = ㏒(x) + c.

(6) = ∫eˣdx = eˣ + c.

(7) = ∫aˣdx = aˣ/㏒(a) + c = aˣ㏒(e) + c.

Answered by Anonymous
92

Answer :-

⇒ ∫dx/x² + 3x + 2.

As we know that,

First we factorizes the denominator, we get.

Factorizes the equation into middle term split, we get.

⇒ x² + 3x + 2.

⇒ x² + 2x + x + 2.

⇒ x(x + 2) + 1(x + 2).

⇒ (x + 1)(x + 2).

Put this value in equation, we get.

⇒ ∫dx/(x + 1)(x + 2). = A/(x + 1) + B/(x + 2).

Taking L.C.M on both sides, we get.

⇒ 1 = A(x + 2) + B(x + 1).

Put the value of x = -2 in equation, we get.

⇒ 1 = A(-2 + 2) + B(-2 + 1).

⇒ 1 = 0 + B(-1).

⇒ B = -1.

Put the value of x = -1 in equation, we get.

⇒ 1 = A(-1 + 2) + B(-1 + 1).

⇒ 1 = A(1) + 0.

⇒ A = 1.

Put the value of A = 1 & B = -1 in equation, we get.

⇒ ∫A/(x + 1) + ∫B/(x + 2).

⇒ ∫1.dx/(x + 1) + ∫(-1).dx/(x + 2).

⇒ ㏑(x + 1) - ㏑(x + 2) + c.

Similar questions